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Abstract

Salmonid fishes provided the first findings on the influence of the growth hormone (GH)/insulin-like growth factor I (IGF-I)
axis on osmoregulation in teleost fishes. Recent studies on non-salmonid species, however, indicate that this physiological action
of the GH/IGF-I axis is not restricted to salmonids or anadromous fishes. GH-producing cells in the pituitary of fish acclimated
to different salinities show different degrees of activation depending on the species studied. Plasma GH levels either increase or
do not change after transfer of fish from freshwater to seawater. Treatment with GH or IGF-I increases salinity tolerance and/or
increases gill Na+,K+-ATPase activity of killifish (Fundulus heteroclitus), tilapia (Oreochromis mossambicus and Oreochromis
niloticus) and striped bass (Morone saxatilis). As in salmonids, a positive interaction between GH and cortisol for improving
hypoosmoregulatory capacity has been described in tilapia (O. mossambicus). Research on the osmoregulatory role of the
GH/IGF-I axis is derived from a small number of teleost species. The study of more species with different osmoregulary patterns
will be necessary to fully clarify the osmoregulatory role of GH/IGF-I axis in fish. The available data does suggest, however, that
the influence of the GH/IGF-I axis on osmoregulation may be a common feature of euryhalinity in teleosts. © 1998 Elsevier
Science Inc. All rights reserved.
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1. Introduction

The somatomedin hypothesis suggests that growth
hormone (GH) stimulates the synthesis of insulin-like
growth factor I (IGF-I), predominantly from the liver,
which carries out some or all of the physiological
actions of GH [11,19,21]. Research over the last 2
decades indicates that the GH/IGF-I axis, in addition
to its somatotropic actions, also promotes seawater
acclimation in salmonids species [9,23] (for review see
Refs. [31,45]). Since seawater entry in anadromous
salmonids is associated with a period of rapid growth,
it was thought that this osmoregulatory function of GH

and IGF-I may be restricted to anadromous species or
even just salmonids. Research in the last few years
indicates that this is not the case. In this mini-review we
will analyze the recent data on the hypoosmoregulatory
actions of the GH/IGF-I axis in non-salmonid teleosts.

2. GH/IGFs and environmental salinities

Morphological data on GH-producing cells (soma-
totropes) in the pituitary of fish adapted to different
salinities show different patterns of activation depend-
ing of the species studied (for review see [4,36,38]). In
tilapia, Oreochromis mossambicus, in situ studies show
similar pattern of mRNA expression in pituitary GH-
cells of freshwater (FW) and seawater (SW) adapted
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fish [37]. In the same species, no significant difference in
pituitary GH mRNA levels were observed between
FW- and SW-acclimated larvae [3]. However, morpho-
logical studies indicate greater pituitary GH cell activity
in SW-acclimated compared to FW-acclimated juvenile
O. mossambicus [6].

Plasma GH levels show different patterns of change
after transfer from FW to SW. Eel (Anguilla japonica)
transferred to SW had no change in plasma GH levels
[51,52] or metabolic clearance rate [12]. Nor did in vitro
osmotic pressure affect GH secretion from the eel pitu-
itary [51]. In the Nile tilapia (Oreochromis niloticus)
plasma GH did not change upon transfer from FW to
brackish water (BW) [1]. Tilapia had similar plasma
GH levels in fish acclimated for 3–4 weeks to FW and
SW (for O. mossambicus) or 50% SW (for O. niloticus)
[2]. Other studies with O. mossambicus report modifica-
tions in plasma GH levels in males specimens after
transfer to a hyperosmotic environment [56]. In addi-
tion, increased plasma GH in O. mossambicus after 4
and 14 days in SW suggests a role of this hormone in
the acclimation phase [34,53].

Plasma IGF-I levels in fish have been evaluated using
heterologous and homologous radioimmunoassay. Us-
ing these techniques it has been demonstrated that GH
treatment increases IGF-I levels in salmonid and non
salmonids species [5,35,37,41]. In salmonids, plasma
IGF-I increases during the parr-smolt transformation
and SW-acclimation [24] (McCormick and Moriyama,
unpublished observations). We are not aware of any
published information on osmoregulation-related
changes in circulating IGF-I in non-salmonid fishes.

The expression of IGF-I and IGF-II mRNA has
been reported in different tissues of salmonids and
non-salmonids species [8,13–15,39]. In salmonids, the
IGF-I mRNA expression in gills is GH dependent [14]
and this expression increases in the gills following SW
exposure [44] and during the parr-smolt transformation
[46]. In the gilthead seabream (Sparus aurata), however,
GH treatment did not increase IGF-I or IGF-II mRNA
expression in gills [15]. Relatively high levels of IGF-II
mRNA were found in gills of Oncorhynchus mykiss [8]
and S. aurata [15]. However, information on modifica-
tions of IGF-I and IGF-II mRNA expression in os-
moregulatory organs in relation to osmoregulatory
processes is completely lacking in non-salmonids
species.

IGF-bindings proteins (IGF-BPs), with several bio-
logical actions, have been described in plasma of differ-
ent species [22]. In teleosts several circulating IGFBPs
have also been identified (for review see Ref. [50]).
However, there is no report about the possible os-
moregulatory functions of IGFBPs in salmonid or non-
salmonid teleosts.

3. Effects of GH treatment

The osmoregulatory effects of GH have been ana-
lyzed in only a few non-salmonids species. To date,
only two tilapia species (O. mossambicus and O. niloti-
cus), the anadromous striped bass (Morone saxatilis)
and the euryhaline mummichog (Fundulus heteroclitus)
have been examined.

Long-term treatment of tilapia with recombinant
tilapia GH increased chloride cell density in the opercu-
lar membrane [17]. Treatment with ovine GH (oGH) or
tilapia GH (tGH) increased salinity tolerance and stim-
ulated gill Na+,K+-ATPase activity of tilapia
[6,47,48]. In accordance with these results, treatment
with tGH decreased plasma osmolality and increased
gill Na+,K+-ATPase activity of tilapia after transfer to
SW [47]. In a less euryhaline FW species of tilapia (O.
niloticus), however, treatment with recombinant tGH
did not improve the adaptability of this species to BW
[1]. However, Xu et al. [57] reported an osmoregulatory
actions of recombinant eel GH (reGH) in O. niloticus.
In this study treatment with reGH enhanced SW adap-
tation and stimulated the differentiation of chloride
cells. The different source of hormone or experimental
design could explain the different results of GH treat-
ment on the osmoregulatory system of O. niloticus.

The striped bass, M. saxatilis, is an anadromous
percichthyid teleost with well developed SW tolerance
[26]. Treatment of hypophysectomized fish maintained
in FW with recombinant striped bass GH (rsbGH)
improved gill Na+,K+-ATPase activity and the capac-
ity of the fish to maintain plasma osmolality. In addi-
tion, a weak hypoosmoregulatory effect was observed
after treatment with rsbGH in SW-acclimated fish
[28].The euryhaline mummichog, F. heteroclitus, was
the subject of some of the earliest studies on the en-
docrine control of ion transport in fish (e.g. [42,43]; for
review see Ref. [55]) but the role of GH and IGFs in
SW-acclimation has not been examined until recently.
In F. heteroclitus a single injection of oGH improved
their ability to maintain plasma osmolality and to
increase gill Na+,K+-ATPase activity after transfer
from BW (1.0% salinity) to SW (3.5% salinity) [29].
Similarly, 10 days of oGH treatment, using a slow-re-
lease system (vegetable oil), also improved the hypoos-
moregulatory capacity of F. heteroclitus after transfer
to high salinity (Mancera and McCormick, unpublished
results).

4. Effects of IGF treatment

Several studies have shown that exogenous IGF-I
increases salinity tolerance and hypoosmoregulatory
mechanisms of salmonids [27,32,33]. To our knowledge
osmoregulatory effect of IGF-I on non-salmonids spe-
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cies has only been tested in the anadromous perci-
chthyid M. saxatilis [28] and the euryhaline
cyprinodont F. heteroclitus [29]. In spite of the posi-
tive effects of GH treatment on hypoosmoregulation
in striped bass, treatment of this species with recom-
binant bovine IGF-I (rbIGF-I) resulted in an os-
moregulatory imbalance after transfer to SW that was
greater than that of control fish. An unfavorable
metabolic effect of rbIGF-I could explain this nega-
tive effect on SW acclimation [28].

In F. heteroclitus a single injection of rbIGF-I im-
proved hypoosmotic capacity (decreased plasma os-
molality and increased gill Na+,K+-ATPase activity)
in a dose-dependent manner [29]. However, 10 days
of rbIGF-I treatment, using a slow-release system
(vegetable oil) did not improve hypoosmoregulatory
capacity after transfer from BW to SW (Mancera and
McCormick, unpublished results). A similar inability
of long-term rbIGF-I treatment to duplicate the ef-
fects of oGH was found for Salmo salar, indicating
that IGF-I may carry out only some of the osmoreg-
ulatory actions of GH [32].

IGF-II is another member of the insulin-like
growth factor family present in the gill and other
tissues [7,8]. Treatment of F. heteroclitus with recom-
binant human IGF-II (rhIGF-II) or with insulin had
no effect on plasma osmolality and gill Na+,K+-AT-
Pase activity after transfer from BW to SW [29]. The
failure of this hormone to improve hypoosmoregula-
tory capacity suggests that rhIGF-II has no effect on
monovalent ion secretion in F. heteroclitus. Additional
experiment will be necessary, however, to confirm this
hypothesis.

5. Interactions between GH, IGF-I and other endocrine
factors

The pathway for the osmoregulatory effects of GH
and IGF-I in non-salmonid teleost is not known. The
available data about this possible pathway come
mainly from salmonid species where several options
have been proposed. GH could act by itself on os-
moregulatory organs or, more likely and in accord
with the somatomedin hypothesis, GH could stimulate
IGF-I production in the liver and osmoregulatory
organs and IGF-I could mediate some of the physio-
logical actions of GH [31,45]. Interaction of GH and
IGF-I with other endocrine systems such as cortisol
and prolactin is also likely.

A cooperation between GH and IGF-I for increas-
ing gill Na+,K+-ATPase activity and ion secretory
capacity has been proposed [31,45]. F. heteroclitus
treated simultaneously with oGH and rbIGF-I (a sin-
gle injection over 3 days of treatment) showed higher
gill Na+,K+-ATPase activity and better salinity tol-

erance compared to either hormone alone [29]. These
results suggest a cooperation between GH and IGF-I
and agree with the data observed in salmonid species.
Compared to either hormone alone, 10 days of oGH
plus rbIGF-I treatment using a slow-release system
(vegetable oil) improved salinity tolerance after trans-
fer from BW to SW but did not affect gill Na+,K+-
ATPase activity (Mancera and McCormick, un-
published results).

The non-correlation between gill Na+,K+-ATPase
activity and salinity tolerance after GH plus IGF-I
treatment suggest an effect of these hormones on
other osmoregulatory organs (e.g. kidney, intestine).
In addition, an effect of GH and IGF-I on gill os-
moregulatory function (e.g. chloride channel activity,
co-transporter activity) other than gill Na+,K+-AT-
Pase activity (e.g. chloride channel activity, co-trans-
porter activity) also could explain this difference.

In addition to the GH/IGF-I axis other hormones
also have hypoosmoregulatory activity and may inter-
act with GH and IGF-I. Cortisol is the main corti-
costeroid released from the adrenal gland and has a
well known role in promoting SW-acclimation in
salmonids and non-salmonids [10,30,43] (see Ref. [31]
for review). In salmonid species a positive interaction
between GH and cortisol has been shown [25,32]. A
possible mechanism for this interaction is the upregu-
lation of gill cortisol receptors by GH reported in
coho salmon (Oncorhynchus kisutch) [49]. In O.
mossambicus a positive cooperation between cortisol
and oGH was observed for increasing gill Na+,K+-
ATPase activity (Mancera and Bern, unpublished
data). In F. heteroclitus, however, this cooperation
was not observed after 10 days of treatment using a
slow-release system (Mancera and McCormick, un-
published data). In addition, F. heteroclitus, treated
with oGH plus thriiodothyronine (T3) did not show
increased gill Na+,K+-ATPase activity or improved
salinity tolerance relative to either hormone alone
(Mancera and McCormick, unpublished data).

In salmonid and non-salmonid species a GH recep-
tor has been characterized in liver and other organs.
In salmonids, the data on dynamics of GH receptors
during adaptation to SW suggest a osmoregulatory
role for this receptor [44]. In non-salmonid species
there are no data concerning modifications of GH
receptors in relation to osmoregulatory processes. In
addition IGF-I receptor has been shown in several
tissues of salmonids and non-salmonids fish (e.g.
brain, liver, gastrointestinal tract, skeletal and heart
muscle, gill and ovaries) [16,18,20,40]. However, fur-
ther studies on expression of IGF-I receptor in os-
moregulatory organs and hormonal control of this
expression are necessary to understand the role of
IGF-I in osmoregulation.
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6. Conclusions and future research

The available data on the osmoregulatory role of
the GH/IGF-I axis in teleosts come from a very small
number of species (salmonids, O. mossambicus, O.
niloticus, M. saxatilis and F. heteroclitus). The study
of more species, with different osmoregulatory pattern,
will be necessary to fully clarify the osmoregulatory
role of the GH/IGF-I axis in non-salmonids species.

Nonetheless, the wide phylogenetic separation of
these species indicates that the role of the GH/IGF
axis on osmoregulation may be a relatively common
feature of euryhalinity in teleosts. It would be of inter-
est to examine non-teleosts fishes such as Acipenseri-
formes (sturgeon) and Petromyzontiformes (lamprey)
to examine how early in vertebrate history the os-
moregulatory function of GH evolved. In a recent
analysis of the structural evolution of vertebrate GH
Wallis [54] found that the changes in its primary struc-
ture were subject to ‘bursts of rapid evolution’ and
suggested that these were related to osmoregulation
and other physiological actions of GH, not related to
growth regulation. Examination of the role of GH in
osmoregulation in more teleost species may allow us
to analyze the relationship between the structural and
functional evolution of GH.

In addition to an evolutionary approach, we need a
greater understanding of the mechanisms involved in
the osmoregulatory function of GH and IGF-I. Unlike
prolactin, the secretion of GH is apparently not al-
tered by changes in plasma osmotic concentration, so
the regulation of GH (and IGF-I) secretion in re-
sponse to salinity changes is likely due to ‘indirect’
neuroendocrine factors. There is currently little infor-
mation on changes in tissue receptors and binding
proteins in teleost in response to salinity. We must
resolve the relative roles of GH and IGF-I in os-
moregulation and their interactions with other en-
docrine systems such as prolactin and cortisol in
osmoregulation. Potential conflicts exist for action of
the GH/IGF-I axis in regulating growth, metabolism
and osmotic balance within an organism. Discovering
how GH and IGF-I are able to carry out all of these
functions will be an additional challenge to researchers
in this field.
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