REGULAR ARTICLE

JOURNAL OF FISH BIOLOGY

Check for updates

Expression of corticoid-regulatory genes in the gills of Atlantic salmon (*Salmo salar*) parr and smolt and during salinity acclimation

Makoto Kusakabe¹ | Takashi Yada² | Graham Young³ | Amy M. Regish⁴ | Stephen D. McCormick^{4,5}

²Coastal and Inland Fisheries Ecosystems Division, Nikko Field Station, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Tochigi, Japan

³School of Aquatic and Fishery Sciences, University of Washington, Seattle, Washington, USA

⁴US Geological Survey, Eastern Ecological Science Center, SO Conte Research Laboratory, Turners Falls, Massachusetts, USA

Correspondence

Makoto Kusakabe, Department of Biological Science, Faculty of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan.

Email: kusakabe.makoto@shizuoka.ac.jp

Funding information

Japan Society for the Promotion of Science, Grant/Award Number: 22770053

Abstract

In teleost fishes, cortisol is the major corticoid and has both glucocorticoid and mineralocorticoid actions. However, how fish tissues discriminate between these distinct corticosteroid actions is unclear. In mammals, the major factors responsible for intracellular corticosteroid regulation are glucocorticoid receptors (grs) and the mineralocorticoid receptor (mr), but their role in osmoregulation of fish is unclear. 11βhydroxysteroid dehydrogenases (hsd11bs) control the levels of intracellular corticosteroids by converting from bioactive forms to inert forms. To investigate how Atlantic salmon (Salmo salar) respond to cortisol in different physiological or environmental conditions, we performed comparisons of parr and smolt, and osmotic challenge experiments to examine the physiological responses and gill transcript levels of genes underlying cortisol-signalling, including gr1, gr2, mr, hsd11b2 and hsd11b3. Because cortisol may interact with growth hormone and prolactin during salinity changes, transcript levels encoding growth hormone receptors (ghr1, ghr2) and the prolactin receptor (prlr) were also examined. Hsd11b2 transcript levels in seawater-acclimated fish were consistently lower compared to fish acclimated to fresh water. After transfer to seawater, prlr transcript levels in fish significantly decreased and transcript levels of ghr1, ghr2 and hsd11b3 showed no change or were slightly higher than those of freshwater control groups. Gr1, gr2 and mr transcript levels were slightly but consistently higher in fish acclimated to fresh water relative to seawater. Our results indicate that changes in corticosteroid receptor and hsd11b2 transcript levels in the gills may be important mechanisms that regulate corticoid signals to achieve ion homeostasis in Atlantic salmon.

KEYWORDS

cortisol, gr, hsd11b, mr, osmoregulation

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

© 2025 The Author(s). Journal of Fish Biology published by John Wiley & Sons Ltd on behalf of Fisheries Society of the British Isles.

J Fish Biol. 2025;1–14. wileyonlinelibrary.com/journal/jfb

¹Creative Science Unit (Biological Science), Faculty of Science, Shizuoka University, Shizuoka, Japan

⁵Department of Biology, University of Massachusetts, Amherst, Massachusetts, USA

10958649.0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/jfb.70119, Wiley Online Library on [20/06/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

and-conditions) on Wiley Online Library for rules

of use; OA

are governed by the applicable Creative Commons

INTRODUCTION

The endocrine system is a key controller of osmoregulatory processes in teleosts, and studies over the past few decades have demonstrated that a number of hormones are involved in regulating ion and water balance (Takei & McCormick, 2013). In many teleost species, the combination of cortisol and growth hormone (GH) promotes acclimation to seawater, whereas cortisol and prolactin (PRL), acting either separately or in combination, support freshwater acclimation (McCormick, 2001).

Gill ionocytes are important for ion uptake in fresh water and ion secretion in seawater (Evans, 2002; Hiroi & McCormick, 2012; Shaughnessy & Breves, 2021; Shih et al., 2023). The number and size of gill ionocytes are increased by GH and cortisol (Takei & McCormick, 2013). The expression of ion transporters and channels that are important for salt secretion in seawater, such as of Na⁺/K⁺-ATPase (NKA α 1b), Na⁺-K⁺-Cl⁻ cotransporter 1 and the cystic fibrosis transmembrane regulator (CFTR, an apical chloride channel), in the gills is promoted by cortisol and GH. In salmonids, these hormones can act both independently and synergistically (Madsen, 1990; Pelis & McCormick, 2001). PRL is a hyper-osmoregulatory hormone in many teleosts (Bern, 1983; Breves et al., 2014), promoting acclimation to fresh water. In some teleost species cortisol also has a role in promoting ion uptake in fresh water (Cruz et al., 2013), stimulating freshwater-type ion transporters and channels, such as Na⁺/ K⁺-ATPase (NKA α 1a), Na⁺/H⁺ exchanger 3 (NHE3) and Na⁺/Cl⁻ cotransporter (NCC) (Hiroi et al., 2008). The dual osmoregulatory role of cortisol likely depends on its interaction with other hormones such as GH and PRL (Takei & McCormick, 2013).

Cortisol has multiple roles in teleosts, regulating metabolism. growth, immune response, stress response and osmoregulation (Wendelaar Bonga, 1997). Although aldosterone is the main mineralocorticoid hormone in terrestrial vertebrates, it is generally accepted that teleosts do not produce substantial levels of circulating aldosterone (Bern, 1967; Kiilerich et al., 2011). This is consistent with the absence of the aldosterone synthase activity of cyp11b in Japanese eel (Anguilla japonica) (Jiang et al., 1998). For osmoregulation in fishes, cortisol appears to be a bifunctional hormone for both hypo- and hyper-saline acclimation in teleosts (Laurent & Perry, 1990; Madsen, 1990; Mancera et al., 2002; Redding et al., 1991). However, it is unclear how fish use cortisol differentially in diverse salinity environments for the development of seawater or freshwater ionocytes in the gill. Two possibilities can be considered which may determine what levels of cortisol are perceived by osmoregulatory organs such as the gill to promote an appropriate physiological response. First, both the abundance and affinity of corticosteroid receptors in ionocytes (or their precursor cells) will determine what levels of cortisol are perceived by the gill to promote an appropriate physiological response (Shrimpton & McCormick, 1999). Second, the presence of steroidogenic enzyme(s) in osmoregulatory tissues/cells can facilitate conversion of active forms (cortisol) to inactive forms (cortisone) to optimize or fine-tune the levels of cortisol needed for osmoregulation.

The first molecular cloning of both the teleost glucocorticoid receptor (gr) and mineralocorticoid receptor (mr) were reported in rainbow trout (Oncorhynchus mykiss) (Colombe et al., 2000; Ducouret et al., 1995; Takeo et al., 1996). Currently, it is widely believed that most teleost possess two isoforms of gr, which are now referred to as gr1 and gr2, and a single mr (Bury et al., 2003; Greenwood et al., 2003). However, the roles of gr1, gr2 or mr for osmoregulatory action of cortisol vary among fish species (Breves Shaughnessy, 2024). In zebrafish (Danio rerio), cortisol action for ion uptake is mediated by gr rather than mr (Cruz et al., 2013). In medaka (Oryzias latipes) embryo, gr2 has strong effects on regulating the number of epidermal ionocytes (Trayer et al., 2013). In freshwateracclimated Mozambique tilapia (Oreochromis mossambicus), cortisol stimulates ionocyte differentiation through the mr (Wu et al. Wu et al., 2023). Since the two known grs in salmonids have different affinities for cortisol (Bury et al., 2003), understanding their relative abundance will be important to determining the potential of the gill to respond to changes in cortisol levels.

In mammals, the major factors responsible for intracellular corticosteroid regulation are two distinct forms of the steroidogenic enzyme 11β-hydroxysteroid dehydrogenase (hsd11b). Hsd11b type 1 (hsd11b1) is principally found in glucocorticoid target tissues, such as liver, gonad and kidney (Agarwal et al., 1989), and acts as an amplifier of glucocorticoid action (Kotelevtsev et al., 1997). Hsd11b type 2 (hsd11b2) is localized mainly in mineralocorticoid target tissues such as kidney and colon (Albiston et al., 1994) and acts as the key physiological factor for converting bioactive glucocorticoids (cortisol or corticosterone) to inert forms (cortisone or 11-dehydrocorticosterone) to protect the mr (Agarwal et al., 1989; Edward et al., 1988; Funder et al., 1988). Hsd11b in fish was first reported in rainbow trout (Kusakabe et al., 2003), Japanese eel (Anguilla japonica) and Nile tilapia (Oreochromis niloticus) (Jiang et al., 2003). These teleost hsd11b have higher homology to mammalian hsd11b2 than hsd11b1. Analyses of enzymatic activity of hsd11bs in rainbow trout and Japanese eel demonstrate conversion of cortisol to cortisone (Jiang et al., 2003; Kusakabe et al., 2003), but no conversion of cortisone to cortisol (Kusakabe et al., 2003). Hsd11b2 transcripts are ubiquitously found in rainbow trout and gill is one of the tissues that strongly expresses hsd11b2 (Kusakabe et al., 2003). Thus, it is possible that hsd11b2 can convert cortisol to cortisone to regulate intracellular cortisol levels

In mammals, another key glucocorticoid regulator is hsd11b1, which catalyses the conversion of cortisone to cortisol. However, the orthologue of mammalian hsd11b1 is seemingly absent in teleosts (Baker, 2004). A search of genome databases revealed that hsd11b type 3 (hsd11b3) was found in sea urchin, amphioxus, sea squirt, shark, teleosts, amphibians and mammals, suggesting that hsd11b3 is the ancestral form of mammalian hsd11b1 (Baker, 2010). However, the function of hsd11b3 is still unknown. Rainbow trout hsd11b3 transcript levels are abundant in gill, brain and pituitary, and are found at lower levels in other tissues (Kusakabe et al., Shizuoka University, oral communication, 7th International Symposium on Fish Endocrinology,

1-6 September 2012). It is therefore possible that *hsd11b3* in teleost gills acts to increase intracellular cortisol (as *hsd11b1* does in mammals), although the enzymatic activity of *hsd11b3* has not yet been determined in teleosts.

Our overall goal of this study was to further examine the role of cortisol in smolt development (which includes large increases in salinity tolerance) and salinity acclimation of Atlantic salmon. Specifically, we examined gill transcript levels of corticosteroid-regulating factors gr1, gr2, mr, hsd11b2 and hsd11b3, and plasma cortisol in Atlantic salmon (Salmo salar) parr and smolt. The transcript levels and plasma cortisol were also investigated during transfer from fresh water to seawater and vice versa. Because of the potential interaction of cortisol with the pituitary hormones, PRL and GH, we also examined changes in gene expression of gill GH receptors (ghr1 and ghr2) and the PRL receptor (prlr).

2 | MATERIALS AND METHODS

2.1 | Experimental animals and sampling

Atlantic salmon parr from the Kensington State Fish Hatchery (CT, USA) were brought to the Conte Anadromous Fish Research Center in October 2010 (MA, USA) and raised in 1.5-m diameter tanks supplied with Connecticut River water (water hardness 170–250 mg L^{-1}) at 4 L/min with supplemental aeration. Fish were reared under a natural photoperiod and fed with automatic feeders during daylight hours.

Parr (10.6–12.8 cm) and smolt (15.7–17.5 cm) were sampled on 12 May 2011, which is the time of peak smolt development for this strain of Atlantic salmon (McCormick et al., 2019). Fish were the same age (16 months from hatching) and size differences were due to natural variation in growth among individuals. At the time of sampling, there were clear morphological differences in silvering, parr marks and black fin margins between parr and smolt.

A freshwater to seawater transfer experiment (FW \rightarrow SW) was conducted beginning on 3 November 2010. Parr (11.6–13.3 cm, 10 months from hatching) were sampled from their stock tanks and then transferred to identical 1.5-m diameter tanks containing either fresh water or seawater (25 ppt). This salinity was chosen based on previous experiments indicating that direct transfer of parr to higher salinities results in substantial mortality. Each tank had recirculating flow-through water with biological and charcoal filtration and supplemental aeration. A 50% water change occurred every third day. Ten parr in fresh water (control) and seawater were sampled at 0 (fresh water only), 2, 5 and 14 days after seawater exposure as described below. Fish were not fed during the experiment to avoid the impact of differential feeding due to salinity change on the physiological responses.

A seawater to freshwater transfer experiment (SW \rightarrow FW) was conducted beginning on 18 January 2006. Prior to the experiment 100 parr (10.8–13.4 cm, 12 months from hatching) were first gradually acclimated to 30 ppt over a period of 20 days in recirculating tanks as described above. They remained at this salinity for 20 days

prior to the beginning of the study. A 50% water change occurred every third day. Ten parr in seawater (control) and fresh water were sampled at 0 (seawater only), 2, 5, 8 and 14 days after freshwater exposure as described below. Fish were not fed during the experiment to avoid the impact of differential feeding due to salinity on the physiological responses.

Fish were sampled between 10:00 and 12:00 Eastern Standard Time. At the time of sampling, fish were rapidly removed from their tanks and placed in a lethal dose of tricaine methanesulfonate (MS-222, 200 mg L $^{-1}$ neutralized to pH 7.0). Fork length to the nearest millimetre and mass to the nearest 0.1 g were recorded, and blood was sampled from the caudal vessels using 1-mL ammonium heparinized syringes. Blood collection was completed within 5 min of the first disturbance of the tank. Blood was centrifuged at 3200g for 5 min at 4°C, and the plasma was aliquoted and stored at -80°C. The second gill arch was removed and the gill filaments trimmed from ceratobranchials and placed in an autoclaved 1.5-mL microcentrifuge tube and frozen immediately at -80°C for later extraction of total RNA.

All animal procedures were reviewed and approved by the US Geological Survey's Eastern Ecological Science Center and/or the Shizuoka University Animal Care and Use Committee.

2.2 | Plasma analyses

Plasma cortisol levels were measured by a validated direct competitive enzyme immunoassay described by Carey and McCormick (1998). Sensitivity as defined by the dose-response curve was 1–400 ng mL $^{-1}$. The lower detection limit was 0.3 ng mL $^{-1}$. Using a pooled plasma sample, the average intra-assay variation was 5.5% (n=10) and the average inter-assay variation was 8.8% (n=10). Plasma chloride was measured using a Buchler-Cotlove Chloridometer (ExpotechUSA) using external standards.

2.3 | Gill NKA activity assay

Gill NKA activity was determined using a temperature-regulated nicotinamide adenine dinucleotide-linked microplate method (McCormick, 1993). Gill samples were homogenized in 150 μL of 0.1% sodium deoxycholate in Sucrose-EDTA-Imidazole buffer, pH 7.3 and centrifuged at 3000g for 30 s. Ten microlitres of this homogenate was run in duplicate in the presence and absence of 0.5 mM ouabain. Protein concentrations were determined using a bicinchoninic acid protein assay (Pierce). Both assays were run on a BioTek Synergy 2 spectro-photometer using Gen5 software (BioTek).

2.4 | RNA extraction

Total RNA was extracted using Isogen (Nippon Gene). The RNA concentration was determined by measuring absorbance at 260 nm using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies).

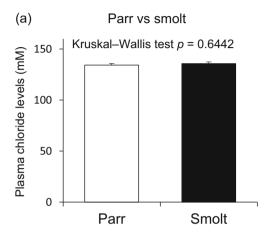
10958649, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/fb.70119, Wiley Online Library on [20.062025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea

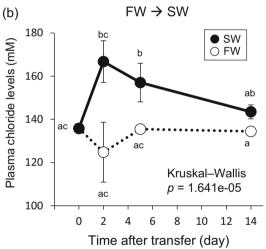
RNA purity was assessed by the ratio of absorbance at 280/260 nm (1.8–2.0) and 260/230 nm (2.0–2.2). RNA quality was checked by agarose (1%) gel electrophoresis, confirming sharp bands of 285/185 rRNA.

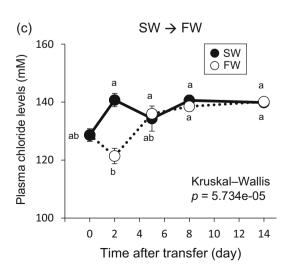
2.5 | Real-time quantitative PCR

One microgram of total RNA was incubated with two units of TURBO DNase I (Ambion; Life Technologies) at 37°C for 30 min to eliminate

genomic DNA contamination. DNase I was inactivated by adding 0.1 volume of DNase inactivation reagent (Ambion, Life Technologies) for 5 min at room temperature. Subsequently, single-strand complementary DNA (cDNAs) were synthesized from the DNase I-treated RNA using a High-Capacity cDNA archive kit as described by the manufacturer (Applied Biosystems).


Real-time quantitative reverse transcription PCR (RT-PCR) was performed for the relative quantitation of transcript levels using an ABI PRISM 7900 sequence detection system (Applied Biosystems). *Hsd11b2*, *hsd11b3*, *gr1*, *gr2* and *mr* expressions were determined


TABLE 1 Sequences of primers and probes used for real-time quantitative PCR.

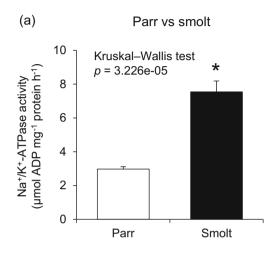

Gene name	Primer/ probe	Sequence (5' $ ightarrow$ 3')	Description	Accession number
11β-hydroxysteroid dehydrogenase 2	hsd11b2_F	TGCGCCACGAAATGGAA	Forward primer	XP_014032144
	hsd11b2_P	CAAAGTGTCCACCATACTGCCATCCTCAT	Probe	
	hsd11b2_R	GGTTACTAGACTGACCTGTCTT	Reverse primer	
11β-hydroxysteroid dehydrogenase 3	hsd11b3_F	GCCCACCCTTGAGCAGAGTA	Forward primer	XM_014169312
	hsd11b3_P	CGGTTCCATTGTGGTCGTCTC	Probe	
	hsd11b3_R	GGGCTGCACATTTTTCCTAATAA	Reverse primer	
Glucocorticoid receptor 1	gr1_F	CGCAGCAGAACCAACAGCTG	Forward primer	XM_014198060
	gr1_P	TGAGAACTTTGCTCTGTTGGAGGCG AGTAT	Probe	
	gr1_R	ATGAGGCGTTCAAGTACAGA	Reverse primer	
Glucocorticoid receptor 2	gr2_F	TCCAGCAGCTTTGCCAGTTCA	Forward primer	XM_014198678
	gr2_P	AGGCAGGGTGGTGGCGCTG	Probe	
	gr2_R	TTGCCCTGGGTTGTACACGA	Reverse primer	
Mineralocorticoid receptor	mr_F	AGCTGATTGAGCCAGAGGTGGTG	Forward primer	XM_014209388
	mr_P	TTGCGGGCTACGACACACCC	Probe	
	mr_R	CAGGTGGTCGTGTCA	Reverse primer	
Growth hormone receptor 1	ghr1_F	CTGGGAAGTTGAGTGCCAGACT	Forward primer	AY462105
	ghr1_R	CACAAGACTACTGTCCTCCGTTGA	Reverse primer	
Growth hormone receptor 2	ghr2_F	AAGGCTGAGGGAAAGGAGAAAGAG	Forward primer	NM_001123594
	ghr2_R	ACCTCCCCGTCAGCATTCAC	Reverse primer	
Prolactin receptor	prlr_F	CTGGAAGTGTACGTCAACGAGAA	Forward primer	XP_013994342
	prlr_R	TTGAGGCAGCCAACATCTTG	Reverse primer	
Glyceraldehyde 3-phosphate dehydrogenase	gapdh_F	GCAGCTACGCTGAGATCAAG	Forward primer	BT059114
	gapdh_R	AAGATGGAGGAGTGGGTGTC	Reverse primer	
Elongation factor 1 alpha	ef1a_F	ATCTCCAAGAATGGGCAAAC	Forward primer	NM_001173967
	ef1a_R	CCATCTTGTTGACCGATACG	Reverse primer	
Ribosomal protein L7	rpI7_F	GTCTGTGCGTGAGCTGATTT	Forward primer	NM_001140480
	rpl7_R	GTCCTCCACACAGATGATGC	Reverse primer	

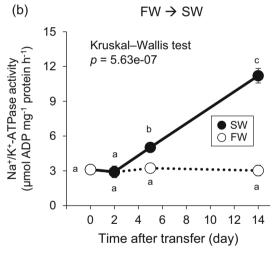
10958649, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/fb.70119, Wiley Online Library on [20.062025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea

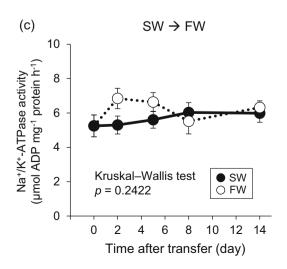
using TaqMan assays (ABI Universal PCR Master Mix, Applied Biosystems). Sequences of primers and probes for hsd11b2, gr1, gr2 and mr were designed based on the previous trout studies (Kusakabe et al., 2006; Yada et al., 2007). Primers and a TaqMan probe for hsd11b3 were designed using Primer Express version 1.5 (Applied Biosystems). Ghr1, ghr2 and prlr gene expressions were determined by SYBR green assay (KAPA SYBR FAST qPCR Master Mix, Kapa Biosystems). Primers for ghr1, ghr2 and prlr were designed using a primer

design online tool (GenScript Real-time PCR Primer Design, https:// cellculturedish.com/genscript-real-time-pcr-taqman-primer-probesdesign-tool/). PCR was performed in a 10-µL reaction volume using 1 μL of 10-fold diluted reverse-transcribed cDNAs. PCR conditions were as follows: 50°C for 2 min and 95°C for 10 min, followed by 40 cycles of 95°C for 15 s and 60°C for 1 min. A standard curve was generated by four-fold serial dilution of brain cDNA. Melting curve analysis was performed after PCR amplification for the SYBR Green assay. The PCR products were confirmed as a single peak. To confirm that the DNase-treated RNA samples were free of genomic DNA, 10 samples were randomly selected. Real-time quantitative RT-PCR was performed for all target genes without reverse transcription to confirm that the samples did not give any signal. Correlation coefficients of the standard curves ranged from 0.99 to 1.00 and the efficiency of the reaction ranged from 99% to 100% (slope = -3.3). The transcript levels are indicated as relative messenger RNA (mRNA) levels. The mean of the initial control group was assigned a value of 1.0. For normalization of data, 18S ribosomal RNA, glyceraldehyde-3-phosphate dehydrogenase (gapdh), elongation factor-1 alpha (ef1a) and 60S ribosomal protein L7 (rpl7) transcript levels were tested. The 18S ribosomal gene was measured by TaqMan assay using commercially available primers and probes (Eukaryotic 18S rRNA Endogenous Control, Applied Biosystems). Gapdh, ef1a and rpl7 gene expressions were determined by SYBR green assay (KAPA SYBR FAST qPCR Master Mix). The mean expression level of the four internal control genes (18S ribosomal, gapdh, ef1a and rpl7) was used for a value of internal control. The average transcript level obtained from an internal control gene was calculated, then the transcript levels of the internal control gene for each sample were divided by the average value. We repeated this calculation for all four internal control genes. By calculating the average transcript levels of four internal control genes, the variation in expression of the internal control genes can be eliminated. The nucleotide sequences for primers and probes are listed in Table 1.

2.6 Statistical analyses


Differences in plasma chloride, cortisol concentrations and transcript levels between parr and smolt were analysed using the Kruskal-Wallis test. Differences in plasma chloride, cortisol and transcript levels in


FIGURE 1 Plasma chloride levels in Atlantic salmon. (a) Comparison of parr and smolt (n = 12 for parr and n = 12 for smolt). Values are the means ± standard error (SE). Differences in chloride levels between parr and smolt were analysed using the Kruskal-Wallis test. (b) Seawater (SW) acclimation experiment. Plasma samples were collected at 0, 2, 5 and 14 days after seawater transfer. (c) Freshwater (FW) acclimation experiment. Plasma samples were collected at 0, 2, 5, 8 and 14 days after freshwater transfer. For (b) and (c), values are indicated as the means \pm SE. Differences in chloride levels between sampling points were analysed using the Kruskal-Wallis test. Values not sharing a letter are significantly different by the Steel-Dwass test (p < 0.05).


0.958649, 0, Downloaded from https://online.library.wiley.com/doi/10.1111/jtb.70119, Wiley Online Library on [20/06/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensea

the seawater or freshwater transfer and the fasting experiments were analysed using the Kruskal–Wallis test, followed by the Steel–Dwass test. A *p* value of 0.05 or lower was considered to be statistically significant. All statistical analyses were performed using R statistical software (version 4.4.2, R Core Team, 2024).

At the time of publication, data were not publicly available from the Japan Society for the Promotion of Science.

3 | RESULTS

3.1 | Plasma chloride levels

In May 2011, there was no significant difference in the plasma chloride levels between parr and smolt in fresh water (Figure 1a). Plasma chloride levels of parr transferred from fresh water to seawater in December were significantly higher after 4 days in seawater compared to controls in fresh water (Figure 1b). The levels of plasma chloride of fish in seawater were within the physiological range (150–170 mM). Plasma chloride levels of fish transferred from seawater to fresh water in January were significantly lower after 2 days of freshwater transfer compared to seawater controls (Figure 1c).

3.2 | Gill Na+/K + -ATPase activity

Gill Na^+/K^+ -ATPase activity was significantly higher in smolt than in parr (Figure 2a). Gill Na^+/K^+ -ATPase activity in fish transferred from fresh water to seawater was significantly higher than those in freshwater controls after 5 days (Figure 2b) and continued to increase through day 14. Gill Na^+/K^+ -ATPase activity of fish transferred from seawater to fresh water showed no significant differences throughout the 14-day study (Figure 2c).

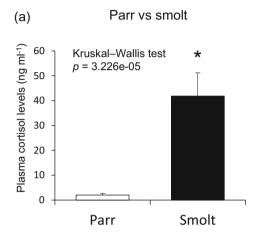
3.3 | Plasma cortisol levels

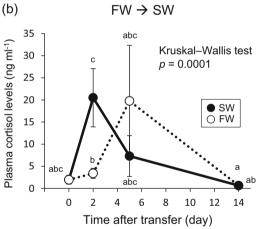
Plasma cortisol levels were significantly higher in smolt than in parr (Figure 3a). Freshwater to seawater transfer experiments showed trends of increases in plasma cortisol levels after 2 days of transfer (fresh water to seawater) or 5 days of transfer (fresh water to fresh water, control fish) (Figure 3b). Plasma cortisol levels 2 days after transfer of fish from seawater to fresh water were significantly higher than those of control fish (Figure 3b).

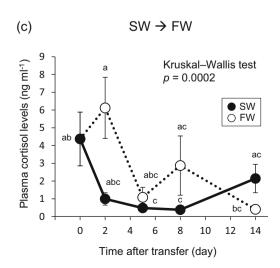
3.4 | Gill transcript levels in parr and smolt

Transcript levels of hsd11b2, hsd11b3, gr1, gr2, mr, prlr and ghr1 in the gills showed no difference between parr and smolt (Figure 4a-g).

FIGURE 2 Na $^+$ /K $^+$ -ATPase activity in the gills of Atlantic salmon. (a) Comparison of parr and smolt (n=12 for parr and n=12 for smolt). Values are the means \pm standard error (SE). Differences in chloride levels between parr and smolt were analysed using the Kruskal–Wallis test. The asterisk indicates a significantly higher value ($^*p < 0.05$). (b) Seawater (SW) acclimation experiment. Gill samples were collected at 0, 2, 5 and 14 days after seawater transfer. (c) Freshwater (FW) acclimation experiment. Gill samples were collected at 0, 2, 5, 8 and 14 days after freshwater transfer. For (b) and (c), values are indicated as the means \pm SE. Differences in chloride levels between sampling points were analysed using the Kruskal–Wallis test. Values not sharing a letter are significantly different by the Steel–Dwass test (p < 0.05).


10958649.0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/jfb.70119, Wiley Online Library on [20/06/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

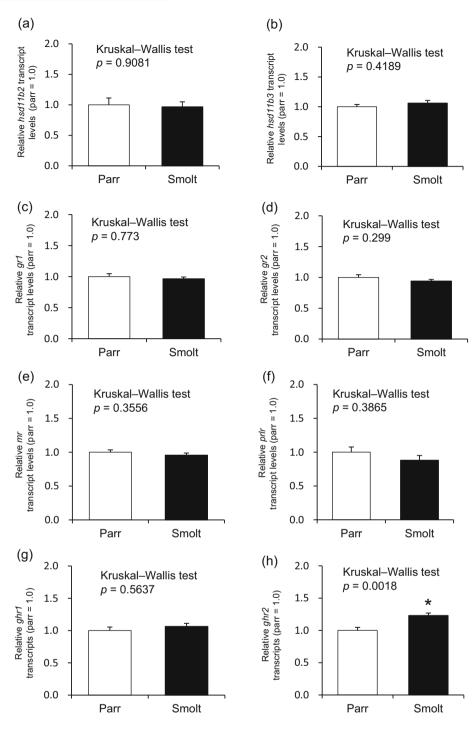

and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons


Transcript levels of *ghr2* (Figure 4h) were significantly higher in the gills of smolt compared to parr.

3.5 | Changes in transcript levels during seawaterand freshwater-acclimation in gills

Hsd11b2 transcript levels in fish transferred from fresh water to seawater remained constant throughout the experiment, whereas

the *hsd11b2* transcript levels in freshwater-transferred fish (controls) significantly increased after 5 days of transfer (Figure 5a). *Hsd11b2* transcript levels in fish transferred from seawater to fresh water were significantly higher than seawater controls after 8 days of the transfer (Figure 5b). The freshwater to seawater transfer experiment showed no significant difference of gill *hsd11b3* transcript levels between groups (Figure 5c). *Hsd11b3* transcript levels in fish transferred from seawater to fresh water did not change over time, whereas the seawater controls significantly increased between 8 and 14 days (Figure 5d).


Gr1 transcript levels in fish transferred from fresh water to seawater tended to be lower than those in freshwater controls (Figure 6a). Gr1 transcript levels in fish transferred from seawater to fresh water tended to be higher than seawater controls (Figure 6b). Gr1 transcript levels significantly increased over time in freshwater groups during the seawater to freshwater transfer experiment. The freshwater to seawater transfer experiment showed no significant difference of gill gr2 transcript levels between groups (Figure 6c). Gr2 transcript levels in fish transferred from seawater to fresh water were significantly higher 8 days after transfer compared to 2-day freshwater controls (Figure 6d). Mr transcript levels after 2 and 14 days of transfer from fresh water to seawater were significantly lower than those of freshwater (control) fish (Figure 6e). Mr transcript levels in fish transferred from seawater to fresh water showed no significant difference in gill mr transcript levels between seawater and freshwater groups by the Steel-Dwass test (Figure 6f).

Prlr transcript levels in fish transferred from fresh water to seawater significantly decreased after 5 and 14 days of transfer, whereas the prlr transcript levels of freshwater fish (control) significantly increased after 2 and 5 days (Figure 7a). Prlr transcript levels in fish transferred from seawater to fresh water significantly increased after 2 days from the transfer and further increased after 5, 8 and 14 days of transfer (Figure 7b). Prlr transcript levels of control fish remained the same throughout the experiment (Figure 7b).

In the freshwater to seawater experiment, *ghr1* transcript levels were not impacted by salinity (Figure 7c). *Ghr1* transcript levels in

FIGURE 3 Plasma cortisol concentrations in Atlantic salmon. (a) Comparison of parr and smolt (n=12 for parr and n=12 for smolt). Values are the means \pm standard error (SE). Differences in cortisol levels between parr and smolt were analysed using the Kruskal–Wallis test. The asterisk indicates a significantly higher value (*p < 0.05). (b) Seawater (SW) acclimation experiment. Plasma samples were collected at 0, 2, 5 and 14 days after seawater transfer. (c) Freshwater (FW) acclimation experiment. Plasma samples were collected at 0, 2, 5, 8 and 14 days after freshwater transfer. Plasma samples were collected at 0, 7 and 14 days after fasting. For (b) and (c), values are indicated as the means \pm SE. Differences in chloride levels between sampling points were analysed using the Kruskal–Wallis test. Values not sharing a letter are significantly different by the Steel–Dwass test (p < 0.05).

10958649, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/fb.70119, Wiley Online Library on [20.062025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseau Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseau Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseau Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseau Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseau Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licenseau Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use of us

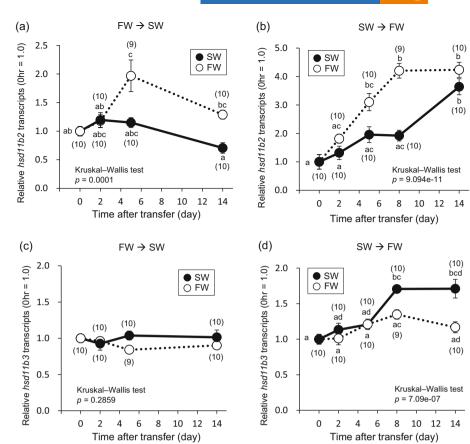


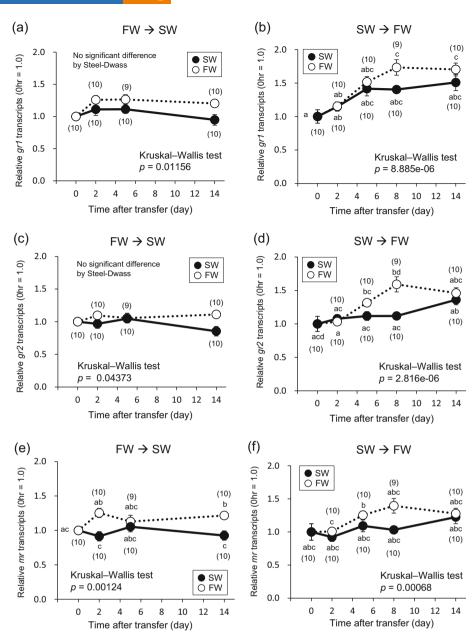
FIGURE 4 Comparison of transcript levels between Atlantic salmon parr and smolt (n = 12 for parr and n = 12 for smolt). *Hsd11b2* (a), *hsd11b3* (b), *gr1* (c), *gr2* (d), *mr* (e), *prlr* (f), *ghr1* (g) and *ghr2* (h). Values are the means \pm standard error. The relative expression values of parr fish were set to 1.0. Differences in transcript levels between parr and smolt were analysed using the Kruskal–Wallis test. The asterisk indicates a significantly higher value (*p < 0.05).

fish transferred from seawater to fresh water significantly increased after 2 days of transfer, whereas they remained constant in fish remaining in seawater (control fish) (Figure 7c). *Ghr2* transcript levels were not significantly influenced by salinity in the freshwater to seawater or seawater to freshwater experiments (Figure 7e,f).

4 | DISCUSSION

When salmon migrate to seawater, substantial physiological changes occur that facilitate adaptation to high salinity environments (McCormick, 2001). The endocrine system controls expression of transporters and channels responsible for salt and water transport. To

study the coordination of osmoregulatory systems in gills of Atlantic salmon during parr-smolt transformation and during seawater- and freshwater acclimation, we examined changes in transcript levels of key osmoregulatory genes with three experiments: comparison between parr and smolt, and time courses of fresh water to seawater and seawater to freshwater exposures. To evaluate the effects of feeding activity, we also conducted a 2-week fasting experiment and examined the same factors examined in the salinity acclimation experiments.


Comparison of parr and smolt showed no significant differences of plasma chloride levels in fresh water. One important alteration that occurs before downstream migration of salmonids into seawater is the development of seawater-type ionocytes in the gills (McCormick et al., 2013). GH and cortisol are known to be two important endocrine factors that promote this development (McCormick, 2001). We hypothesized that smolt prepared for downstream migration would have higher expression levels of key osmoregulatory genes than parr. However, only cftr1 transcript levels were different between parr and smolt (Figure S1C). Nonetheless, gill NKA activity was higher in smolt, and because sampling occurred at the peak of smolt development, transcriptional changes in atp1a1a and atp1a1b likely occurred earlier, as shown in previous studies (Christensen et al., 2018; Nilsen et al., 2007). Gill ghr2 transcript levels were slightly but significantly higher in smolt than in parr. Plasma cortisol levels were significantly higher in smolt than in parr, which is consistent with previous studies

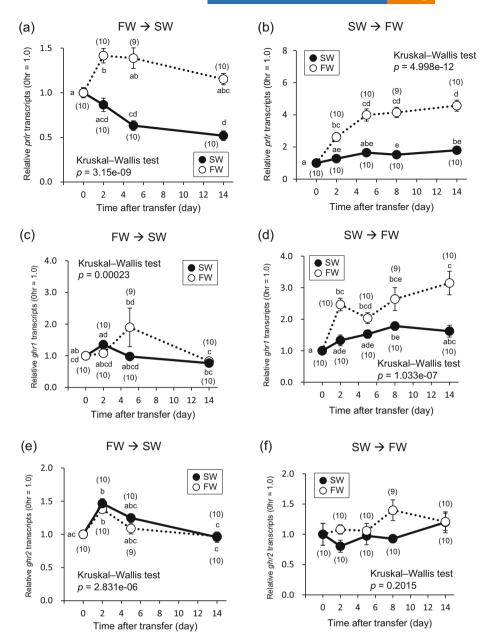
(Specker & Schreck, 1982; Langhorne & Simpson, 1986). Cortisol implantation induced cftr1 expression, but not cftr2 expression in Atlantic salmon (Singer et al., 2003). In vitro incubation with cortisol stimulated transcript levels of cftr1 in gills from both freshwater- and seawater-acclimated Atlantic salmon (Kiilerich et al., 2007a). The results of the present study support the idea that cftr1 expression is under the control of circulating cortisol during smolt development.

Regarding the seawater and freshwater acclimation, physiological data revealed that the fish used in this study successfully acclimated to the changes in environmental salinity in each experimental condition. One of the largest transcriptional changes observed in the present study was the response of gill prlr to salinity, which significantly decreased after transfer from fresh water to seawater and increased after transfer from seawater to fresh water. Kiilerich et al. (2007b) reported that gill prlr transcript levels decreased during smolt development but increased after seawater transfer, whereas Nilsen et al. (2007) found that prlr levels decreased after a month in seawater. The latter is consistent with our results and indicates that gill prlr transcription is elevated in fresh water relative to seawater. Decreases in gill prlr transcript abundance following seawater transfer have also been shown in Mozambique tilapia (Breves et al., 2010; Sandra et al., 1995; Shiraishi et al., 1999). Two prolactin receptor paralogs have been found in Mozambique tilapia (Fiol et al., 2009) and black sea bream (Spondyliosoma cantharus; Huang et al., 2007), and gill prlr1/a is elevated in fresh water and prlr1/b elevated in seawater in the black sea

10958649, 0, Downloaded from https://onlinelibrary.wiley.com/doi/10.1111/jfb.70119, Wiley Online Library on [20/06/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms

-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

FIGURE 6 Atlantic salmon gill gr1 transcript levels during seawater (SW) acclimation (a) and freshwater (FW) acclimation (b) experiments. Atlantic salmon gill gr2 transcript levels during the seawater acclimation (c) and freshwater acclimation (d) experiments. Atlantic salmon gill mr transcript levels during the seawater acclimation (e) and freshwater acclimation (f) experiments. The values were corrected with internal controls and the relative expression values at day 0 were set to 1.0 (see Materials and Methods). Differences in transcript levels between sampling points were analysed using the Kruskal–Wallis test. Values not sharing a letter are significantly different by the Steel–Dwass test (p < 0.05). For the seawater acclimation experiment, gill samples were collected at 0, 2, 5 and 14 days after seawater transfer. For the freshwater acclimation experiment, gill samples were collected at 0, 2, 5, 8 and 14 days after freshwater transfer. The numbers in parentheses in each graph indicate the number of samples at each sampling point.


bream. The pattern of *prlr* transcript levels measured in the present study were most similar to those of *prlr1/a* observed in tilapia, where transcript levels were upregulated after freshwater exposure. Further examination of Atlantic salmon, their tissue distribution and response to salinity could enhance our understanding of the existence of two *prlr* isoforms. Prunet et al. (1985) demonstrated that plasma PRL levels decreased after seawater transfer and increased after freshwater transfer in rainbow trout but did not change consistently in response to changes in salinity in Atlantic salmon (Prunet et al., 1989). In

contrast, Young et al. (1989) found that plasma PRL of coho salmon (*Oncorhynchus kisutch*) decreased within 24 h of exposure to seawater and remained low for 14 days. The strong effect of salinity on circulating PRL and PRL receptor highlights the key role for PRL signalling in regulating osmoregulatory physiology of Atlantic salmon, particularly during acclimation to fresh water.

Previous studies have demonstrated an important role for GH in osmoregulation of many euryhaline teleost fish (Takei & McCormick, 2013). Kiilerich et al. (2007b) and Nilsen et al. (2007) both

10958649, 0, Downloaded from https://online.library.wiley.com/doi/10.1111/fb.70119, Wiley Online Library on [20/062025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons Licensean

FIGURE 7 Atlantic salmon gill prlr transcript levels during seawater (SW) acclimation (a) and freshwater (FW) acclimation (b) experiments. Atlantic salmon gill ghr1 transcript levels during seawater acclimation (c) and freshwater acclimation (d) experiments. Atlantic salmon gill ghr2 transcript levels during seawater acclimation (e) and freshwater acclimation (f) experiments. The values were corrected with internal controls and the relative expression values at day 0 were set to 1.0 (refer to Materials and Methods). Differences in transcript levels between sampling points were analysed using the Kruskal-Wallis test. Values not sharing a letter are significantly different by the Steel-Dwass test (p < 0.05). For the seawater acclimation experiment, gill samples were collected at 0, 2, 5 and 14 days after seawater transfer. For the freshwater acclimation experiment, gill samples were collected at 0, 2, 5, 8 and 14 days after freshwater transfer. The numbers in parentheses in each graph indicate the number of samples at each sampling point.

found increased gill *ghr* transcription during smolt development, but conflicting results regarding changes following seawater exposure. Breves et al. (2017) found that gill *ghr* transcription did not change during smolt development, but was elevated following exposure of smolt to seawater. The results of the present study revealed that changes in gill *ghr* transcription in parr were not strongly influenced by environmental salinities, and thus may not be critical to salinity acclimation for this developmental stage.

Cortisol is known to be one of the major osmoregulatory hormones in bony fishes. Plasma cortisol levels stayed high for several days after seawater transfer in American eel (*Anguilla rostrata*; Forrest Jr. et al., 1973) and Atlantic sturgeon (*Acipenser oxyrinchus*; McCormick et al., 2020). Transient increases of plasma cortisol within 6–24 h after seawater transfer have been observed in tilapia

(Assem & Hanke, 1981), juvenile chinook salmon (*Oncorhynchus tshawytscha*; Strange & Schreck, 1980), parr, smolt and adult Atlantic salmon (McCormick et al., 2013, 2019; Nichols & Weisbart, 1985), and striped bass (*Morone saxatilis*; Madsen et al., 1994). In some cases, however, no meaningful change of plasma cortisol was observed during seawater exposure in tilapia (Dean et al., 2003), although Assem and Hanke (1981) reported the increase of plasma cortisol at the early phase of seawater exposure in the same species. Thus, plasma cortisol levels following seawater exposure are variable depending on species, developmental stage and/or physiological status. Although plasma cortisol levels increase slightly, the metabolic clearance rate of cortisol increases to a much greater extent following seawater exposure of Atlantic salmon, indicating that both synthesis and catabolism are increased (Nichols & Weisbart, 1985). A number of previous studies

using exogenous cortisol and corticosteroid receptor blockers have shown that cortisol is a major endocrine factor for osmoregulatory homeostasis (Takei & McCormick, 2013). Thus, it is possible that teleosts, particularly euryhaline fishes, have tissue-specific mechanisms that can promote a response to cortisol in osmoregulatory tissues. Flores et al. (2012) showed that gr1, gr2 and mr in the gills of rainbow trout did not change after transfer to 70% seawater for up to 2 weeks. Yada et al. (2008) reported that gill gr1, gr2 and mr in steelhead (Oncorhynchus mykiss) significantly increased after acclimation to 100% seawater for a month. Killerich et al. (2007b) showed that gill gr transcript levels were significantly increased and mr were significantly decreased after 24 h of seawater exposure in Atlantic salmon. Thus, the responses of gr1, gr2 and mr expression in response to salinity change in salmonids appear to be inconsistent. In the present study, changes in gr1, gr2 and mr expression were relatively small, at least in comparison with changes in atp1a1a, atp1a1b and cftr1 transcript levels following seawater transfers (Figures S2 and S3). Nonetheless, the fact that transcript abundance of all three corticosteroid receptors was decreased in seawater and increased in fresh water indicates that regulation of these receptors may be important in the Atlantic salmon's response to salinity change, especially during freshwater acclimation.

Another possible cortisol-regulating factor that may be involved in salinity acclimation is the tissue level of hsd11b. Kiilerich et al. (2007b) found that transcript levels of gill hsd11b2 after 24 h in seawater were significantly increased early in smolt development but decreased late in smolt development, indicating a developmental difference in response to salinity. In the present study, 2 weeks of fasting induced increases of hsd11b2 transcript levels (as well as gr1, gr2 and mr transcripts), although these were small compared to the changes observed due to salinity (Figure \$5). Our results indicate that for Atlantic salmon parr, exposure to seawater decreases and exposure to fresh water increases the abundance of hsd11b2 transcript levels. The lower levels of gill hsd11b2 in seawater conditions would reduce the conversion of cortisol to cortisone, resulting in higher cortisol within gill cells. This would, in turn, increase the binding of cortisol to its receptors and promote the transcription of ion transporters and channels in gill ionocytes that are critical for seawater acclimation. Localizing hsd11b2 in the gill could support determination of whether it is more abundant in gill ionocytes and whether it co-localizes with corticosteroid receptors.

Hsd11b3 transcripts were detectable in Atlantic salmon gill. The seawater to freshwater experiment showed that gill hsd11b3 transcript levels were significantly higher in seawater fish. However, freshwater to seawater and fasting experiments (Figure S2D) showed no significant change of gill hsd11b3 transcript levels. These results do not support the hypothesis that multiple types of hsd11bs are differentially expressed in the gills and optimize levels of corticosteroids involved in osmoregulation. Determining the enzymatic activity of hsd11b3 through a transient transfection assay or other approaches could help characterize the enzyme's function.

In conclusion, salinity change had slight but consistent impacts that resulted in higher levels of gill gr1, gr2 and mr transcripts in fresh water. Even stronger upregulation by freshwater exposure was seen for gill prlr expression, indicating that both PRL and cortisol signalling are important for freshwater acclimation. The coincident increases in corticosteroid and prolactin levels indicate a possible interaction between prolactin and cortisol, which could be further examined. Decreased transcription of gill hsd11b2 during seawater acclimation likely promotes elevated intracellular cortisol that will promote the development of seawater ionocytes and associated ion transporters. Innovation in methods for measurement of intracellular cortisol in specific cell types (such as seawater ionocytes in the gill) would help test the role of hsd11b2 in smolt development and seawater acclimation

AUTHOR CONTRIBUTIONS

M.K., A.M.R. and S.D.M. performed the experiments and analyzed the data. T.Y. and G.Y. helped supervise the project. M.K. and S.D.M. wrote the manuscript in consultation with A.M.R., T.Y. and G.Y.

ACKNOWLEDGEMENTS

This research was partially supported by a Grant-in-Aid for Young Scientist (B) to M.K. (22770053) from the Japan Society for the Promotion of Science. We acknowledge the efforts of Michael F. O'Dea to rear fish used in this study and for help in sampling fish. We thank Professor Jason Breves for helpful comments in review of an early version of the manuscript. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

ORCID

Makoto Kusakabe https://orcid.org/0000-0003-1230-934X

REFERENCES

Agarwal, A. K., Monder, C., Eckstein, B., & White, P. C. (1989). Cloning and expression of rat cDNA encoding corticosteroid 11_{\beta}-dehydrogenase. Journal of Biological Chemistry, 264, 18939-18943.

Albiston, A. L., Obeyesekere, V. R., Smith, R. E., & Krozowski, Z. S. (1994). Cloning and tissue distribution of the human 11β-hydroxysteroid dehydrogenase type 2 enzyme. Molecular and Cellular Endocrinology, 105. R11-R17.

Assem, H., & Hanke, W. (1981). Cortisol and osmotic adjustment of the euryhaline teleost, Sarotherodon mossambicus. General and Comparative Endocrinology, 43, 370-380.

Baker, M. E. (2004). Evolutionary analysis of 11β-hydroxysteroid dehydrogenase-type 1, -type 2, -type 3 and 17β-hydroxysteroid dehydrogenase-type 2 in fish. FEBS Letters, 574, 167-170.

Baker, M. E. (2010). Evolution of 11β-hydroxysteroid dehydrogenase-type 1 and 11β-hydroxysteroid dehydrogenase-type 3. FEBS Letters, 584, 2279-2284.

Bern, H. A. (1967). Hormones and endocrine glands of fishes. Science, 158,

Bern, H. A. (1983). Functional evolution of prolactin and growth hormone in lower vertebrates. American Zoologist, 23, 663-671.

Breves, J. P., Fox, B. K., Pierce, A. L., Hirano, T., & Grau, E. G. (2010). Gene expression of growth hormone family and glucocorticoid receptors, osmosensors, and ion transporters in the gill during seawater acclimation of Mozambique tilapia, Oreochromis mossambicus. Journal of Experimental Zoology, Part A, Ecological, Genetics and Physiology, 313, 432-441.

- Breves, J. P., Fujimoto, C. K., Phipps-Costin, S. K., Einarsdottir, I. E., Bjornsson, B. T., & McCormick, S. D. (2017). Variation in branchial expression among insulin-like growth-factor binding proteins (igfbps) during Atlantic salmon smoltification and seawater exposure. *BMC Physiology*, 17, 2.
- Breves, J. P., McCormick, S. D., Rolf, O., & Karlstrom, R. O. (2014). Prolactin and teleost ionocytes: New insights into cellular and molecular targets of prolactin in vertebrate epithelia. *General and Comparative Endocrinology*, 203, 21–28.
- Breves, J. P., & Shaughnessy, C. A. (2024). Endocrine control of gill ionocyte function in euryhaline fishes. *Journal of Comparative Physiology B*, 194, 663–684.
- Bury, N. R., Sturm, A., Le Rouzic, P., Lethimonier, C., Ducouret, B., Guiguen, Y., Robinson-Rechavi, M., Laudet, V., Rafestin-Oblin, M. E., & Prunet, P. (2003). Evidence for two distinct functional glucocorticoid receptors in teleost fish. *Journal of Molecular Endocrinology*, 31, 141–156.
- Carey, J. B., & McCormick, S. D. (1998). Atlantic salmon smolts are more responsive to an acute handling and confinement stress than parr. Aquaculture, 168, 237–253.
- Christensen, A. K., Regish, A. M., & McCormick, S. D. (2018). Shifts in the relationship between mRNA and protein abundance of gill iontransporters during smolt development and seawater acclimation in Atlantic salmon (Salmo salar). Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 221, 63–73.
- Colombe, L., Fostier, A., Bury, N., Pakdel, F., & Guiguen, Y. (2000). A mineralocorticoid-like receptor in the rainbow trout, *Oncorhynchus mykiss*: Cloning and characterization of its steroid binding domain. *Steroids*, 65, 319–328.
- Cruz, S. A., Chao, P. L., & Hwang, P. P. (2013). Cortisol promotes differentiation of epidermal ionocytes through Foxi3 transcription factors in zebrafish (Danio rerio). Comparative Biochemistry and Physiology A, Molecular & Integrative Physiology, 164, 249–257.
- Dean, D. B., Whitlow, Z. W., & Borski, R. J. (2003). Glucocorticoid receptor upregulation during seawater adaptation in a euryhaline teleost, the tilapia (Oreochromis mossambicus). General and Comparative Endocrinology, 132, 112–118.
- Ducouret, B., Tujague, M., Ashraf, J., Mouchel, N., Servel, N., Valotaire, Y., & Thompson, E. B. (1995). Cloning of a teleost fish glucocorticoid receptor shows that it contains a deoxyribonucleic acidbinding domain different from that of mammals. *Endocrinology*, 136, 3774–3783.
- Edward, C. R. W., Stewart, P. M., Burt, D., Brett, L., McIntyre, M. A., Sutanto, W. S., de Kloet, E. R., & Monder, C. (1988). Localization of 11β-hydroxysteroid dehydrogenase-tissue specific protector of the mineralocorticoid receptor. *The Lancet*, *2*, 986–989.
- Evans, D. H. (2002). Cell signaling and ion transport across the fish gill epithelium. *Journal of Experimental Zoology*, 293, 336–347.
- Fiol, D. F., Sanmarti, E., Sacchi, R., & Kultz, D. (2009). A novel tilapia prolactin receptor is functionally distinct from its paralog. *Journal of Experimental Biology*, 212, 2007–2015.
- Flores, A. M., Shrimpton, J. M., Patterson, D. A., Hills, J. A., Cooke, S. J., Yada, T., Moriyama, S., Hinch, S. G., & Farrell, A. P. (2012). Physiological and molecular endocrine changes in maturing wild sockeye salmon, Oncorhynchus nerka, during ocean and river migration. Journal of Comparative Physiology B, 182, 77–90.
- Forrest, J. N., Jr., MacKay, W. C., Gallagher, B., & Epstein, F. H. (1973).
 Plasma cortisol response to saltwater adaptation in the American eel Anguilla rostrata. American Journal of Physiology, 224, 714–717.
- Funder, J. W., Pearce, P. T., Smith, R., & Smith, A. I. (1988). Mineralocorticoid action: Target tissue specificity is enzyme, not receptor, mediated. *Science*, 242, 583–585.
- Greenwood, A. K., Butler, P. C., White, R. B., DeMarco, U., Pearce, D., & Fernald, R. D. (2003). Multiple corticosteroid receptors in a teleost fish: Distinct sequences, expression patterns, and transcriptional activities. *Endocrinology*, 144, 4226–4236.

- Hiroi, J., & McCormick, S. D. (2012). New insights into gill ionocyte and ion transporter function in euryhaline and diadromous fish. Respiratory Physiology & Neurobiology, 184, 257–268.
- Hiroi, J., Yasumasu, S., McCormick, S. D., Hwang, P. P., & Kaneko, T. (2008). Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish. *Journal of Experimental Biology*, 211, 2584– 2599
- Huang, X., Jiao, B., Fung, C. K., Zhang, Y., Ho, W. K. K., Chan, C. B., Lin, H., Wang, D., & Cheng, C. H. K. (2007). The presence of two distinct prolactin receptors in seabream with different tissue distribution patterns, signal transduction pathways and regulation of gene expression by steroid hormones. *Journal of Endocrinology*, 194, 373–392.
- Jiang, J. Q., Wang, D. S., Senthilkumaran, B., Kobayashi, T., Kobayashi, H. K., Yamaguchi, A., Ge, W., Young, G., & Nagahama, Y. (2003). Isolation, characterization and expression of 11β-hydroxysteroid dehydrogenase type 2 cDNAs from the testes of Japanese eel (Anguilla japonica) and Nile tilapia (Oreochromis niloticus). Journal of Molecular Endocrinology, 31, 305–315.
- Jiang, J. Q., Young, G., Kobayashi, T., & Nagahama, Y. (1998). Eel (Anguilla japonica) testis 11β-hydroxylase gene is expressed in interrenal tissue and its product lacks aldosterone synthesizing activity. Molecular and Cellular Endocrinology, 146, 207–211.
- Kiilerich, P., Kristiansen, K., & Madsen, S. S. (2007a). Cortisol regulation of ion transporter mRNA in Atlantic salmon gill and the effect of salinity on the signaling pathway. *Journal of Endocrinology*, 194, 417–427.
- Kiilerich, P., Kristiansen, K., & Madsen, S. S. (2007b). Hormone receptors in gills of smolting Atlantic salmon, Salmo salar: Expression of growth hormone, prolactin, mineralocorticoid and glucocorticoid receptors and 11β-hydroxysteroid dehydrogenase type 2. General and Comparative Endocrinology, 152, 295–303.
- Kiilerich, P., Milla, S., Sturm, A., Valotaire, C., Chevolleau, S., Giton, F., Terrien, X., Fiet, J., Fostier, A., Debrauwer, L., & Prunet, P. (2011). Implication of the mineralocorticoid axis in rainbow trout osmoregulation during salinity acclimation. *Journal of Endocrinology*, 209, 221–235.
- Kotelevtsev, Y. V., Holmes, M. C., Burchell, A., Houston, P. M., Scholl, D., Jamieson, P. M., Best, R., Brown, R. W., Edwards, C. R. W., Seckl, J. R., & Mullins, J. J. (1997). 11β-hydroxysteroid dehydrogenase type 1 knockout mice show attenuated glucocorticoid inducible responses and resist hyperglycaemia on obesity and stress. Proceedings of the National Academy of Sciences of the United States of America, 94, 1199–1201.
- Kusakabe, M., Nakamura, I., Evans, J., Swanson, P., & Young, G. (2006). Changes in mRNAs encoding steroidogenic acute regulatory protein, steroidogenic enzymes and receptors for gonadotropins during spermatogenesis in rainbow trout testes. *Journal of Endocrinology*, 189, 541–554.
- Kusakabe, M., Nakamura, I., & Young, G. (2003). 11β-hydroxysteroid dehydrogenase complementary deoxyribonucleic acid in rainbow trout: Cloning, sites of expression, and seasonal changes in gonads. *Endocrinology*, 144, 2534–2545.
- Langhorne, P., & Simpson, T. H. (1986). The interrelationship of cortisol, gill (Na + K) ATPase, and homeostasis during the Parr-smolt transformation of Atlantic salmon (*Salmo salar L.*). General and Comparative Endocrinology, 61, 203–213.
- Laurent, P., & Perry, S. F. (1990). Effects of cortisol on gill chloride cell morphology and ionic uptake in the freshwater trout, Salmo gairdneri. Cell and Tissue Research, 259, 429-442.
- Madsen, S. S. (1990). The role of cortisol and growth hormone in seawater adaptation and development of hypoosmoregulatory mechanisms in sea trout parr (Salmo trutta trutta). General and Comparative Endocrinology, 79, 1–11.
- Madsen, S. S., McCormick, S. D., Young, G., Endersen, J. S., Nishioka, R. S., & Bern, H. A. (1994). Physiology of seawater

- acclimation in the striped bass, Morone saxatilis (Walbaum). Fish Physiology and Biochemistry, 13, 1–11.
- Mancera, J. M., Carrión, R. L., & Río, M. P. M. (2002). Osmoregulatory action of PRL, GH, and cortisol in the gilthead seabream (*Sparus aurata* L.). *General and Comparative Endocrinology*, 129, 95–103.
- McCormick, S. D. (1993). Methods for non-lethal gill biopsy and measurement of Na⁺,K⁺-ATPase activity. *Canadian Journal of Fisheries and Aquatic Sciences*, 50, 656–658.
- McCormick, S. D. (2001). Endocrine control of osmoregulation in teleost fish. *American Zoologist*, 41, 781–794.
- McCormick, S. D., Regish, A. M., Ardren, W. R., Bjornsson, B. T., & Bernier, N. J. (2019). The evolutionary consequences for seawater performance and its hormonal control when anadromous Atlantic salmon become landlocked. *Scientific Reports*, 9, 968.
- McCormick, S. D., Regish, A. M., Christensen, A. K., & Björnsson, B. T. (2013). Differential regulation of sodium-potassium pump isoforms during smolt development and seawater exposure of Atlantic salmon. *Journal of Experimental Biology*, 216, 1142–1151.
- McCormick, S. D., Taylor, M. L., & Regish, A. M. (2020). Cortisol is an osmoregulatory and glucose-regulating hormone in Atlantic sturgeon, a basal ray-finned fish. *Journal of Experimental Biology*, 223, jeb220251. https://doi.org/10.1242/jeb.220251
- Nichols, D. J., & Weisbart, M. (1985). Cortisol dynamics during seawater adaptation of Atlantic salmon Salmo salar. American Journal of Physiology, 248, R651–R659.
- Nilsen, T. O., Ebbesson, L. E., Stefansson, S. O., Madsen, S. S., McCormick, S. D., Björnsson, B. T., & Prunet, P. (2007). Differential expression of gill Na⁺,K⁺-ATPase α- and β-subunits, Na⁺,K⁺,2Cl⁻ cotransporter and CFTR anion channel in juvenile anadromous and landlocked Atlantic salmon Salmo salar. Journal of Experimental Biology, 210, 2885–2896.
- Pelis, R. M., & McCormick, S. D. (2001). Effects of growth hormone and cortisol on Na(+)-K(+)-2Cl(-) cotransporter localization and abundance in the gills of Atlantic salmon. *General and Comparative Endocrinology*, 124, 134–143.
- Prunet, P., Boeuf, G., Bolton, J. P., & Young, G. (1989). Smoltification and seawater adaptation in Atlantic salmon (*Salmo salar*): Plasma prolactin, growth hormone, and thyroid hormones. *General and Comparative Endocrinology*, 74, 355–364.
- Prunet, P., Boeuf, G., & Houdebine, L. M. (1985). Plasma and pituitary prolactin levels in rainbow trout during adaptation to different salinities. *Journal of Experimental Zoology*, 235, 187–196.
- Redding, J. M., Patińo, R., & Schreck, C. B. (1991). Cortisol effects on plasma electrolytes and thyroid hormones during smoltification in coho salmon Oncorhynchus kisutch. General and Comparative Endocrinology, 81, 373–382.
- Sandra, O., Sohm, F., De Luze, A., Prunet, P., Edery, M., & Kelly, P. A. (1995). Expression cloning of a cDNA encoding a fish prolactin receptor. Proceedings of the National Academy of Sciences of the United States of America, 92, 6037–6041.
- Shaughnessy, C. A., & Breves, J. P. (2021). Molecular mechanisms of Cl(-) transport in fishes: New insights and their evolutionary context. *Journal of Experimental Zoology Part A: Ecological and Integrative Physiology*, 335. 207–216.
- Shih, S. W., Yan, J. J., Chou, M. Y., & Hwang, P. P. (2023). Recent progress and debates in molecular physiology of Na⁺ uptake in teleosts. Frontiers in Marine Science, 10, 1066929.
- Shiraishi, K., Matsuda, M., Mori, T., & Hirano, T. (1999). Changes in the expression of prolactin- and cortisol-receptor genes during early-life

- stages of euryhaline tilapia (Oreochromis mossambicus) in fresh water and seawater. Zoological Science, 16, 139-146.
- Shrimpton, J. M., & McCormick, S. D. (1999). Responsiveness of gill Na⁺/K⁺-ATPase to cortisol is related to gill corticosteroid receptor concentration in juvenile rainbow trout. *Journal of Experimental Biology*, 202, 987–995.
- Singer, T. D., Finstad, B., McCormick, S. D., Wiseman, S. B., Schulte, P. M., & McKinley, R. S. (2003). Interactive effects of cortisol treatment and ambient seawater challenge on gill Na⁺,K⁺-ATPase and CFTR expression in two strains of Atlantic salmon smolts. *Aquaculture*, 222, 15–28.
- Specker, J. L., & Schreck, C. B. (1982). Changes in plasma corticosteroids during smoltification of coho salmon, Oncorhynchus kisutch. General and Comparative Endocrinology, 46, 53–58.
- Strange, R. J., & Schreck, C. B. (1980). Seawater and confinement alters survival and cortisol concentration in juvenile chinook salmon. *Copeia*, 1980, 351–353.
- Takei, Y., & McCormick, S. D. (2013). Hormonal control of fish euryhalinity.
 In S. D. McCormick, A. P. Farrell, & C. J. Brauner (Eds.), Euryhaline fishes. Fish physiology (Vol. 32, pp. 69–123). Elsevier.
- Takeo, J., Hata, J., Segawa, C., Toyohara, H., & Yamashita, S. (1996). Fish glucocorticoid receptor with splicing variants in the DNA binding domain. FEBS Letters, 389, 244–248.
- Trayer, V., Hwang, P. P., Prunet, P., & Thermes, V. (2013). Assessment of the role of cortisol and corticosteroid receptors in epidermal ionocyte development in the medaka (*Oryzias latipes*) embryos. *General and Comparative Endocrinology*, 194, 152–161.
- Wendelaar Bonga, S. E. (1997). The stress response in fish. *Physiological Reviews*, 77, 591–625.
- Wu, C. Y., Lee, T. H., & Tseng, D. Y. (2023). Mineralocorticoid receptor mediates cortisol regulation of ionocyte development in tilapia (Oreochromis mossambicus). Fishes, 8, 283.
- Yada, T., Azuma, T., Hyodo, S., Hirano, T., Grau, E. G., & Schreck, C. B. (2007).
 Differential expression of corticosteroid receptor genes in rainbow trout (Oncorhynchus mykiss) immune system in response to acute stress. Canadian Journal of Fisheries and Aquatic Sciences, 64, 1382–1389.
- Yada, T., Hyodo, S., & Schreck, C. B. (2008). Effects of seawater acclimation on mRNA levels of corticosteroid receptor genes in osmoregulatory and immune systems in trout. General and Comparative Endocrinology, 156, 622–627.
- Young, G., Björnsson, B. T., Prunet, P., Lin, R. J., & Bern, H. A. (1989). Smoltification and seawater adaptation in coho salmon (Oncorhynchus kisutch): Plasma prolactin, growth hormone, thyroid hormones, and cortisol. General and Comparative Endocrinology, 74, 335–345.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Kusakabe, M., Yada, T., Young, G., Regish, A. M., & McCormick, S. D. (2025). Expression of corticoid-regulatory genes in the gills of Atlantic salmon (*Salmo salar*) parr and smolt and during salinity acclimation. *Journal of Fish Biology*, 1–14. https://doi.org/10.1111/jfb.70119