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Maintenance of constant cellular ion concentrations is a basic
requirement of all life forms. The strategy evolved by teleost fish to achieve
this requirement is by maintaining nearly constant levels of extracellular
ions at approximately one-third the ionic strength of seawater (SW). In
freshwater (FW), teleosts must counteract the passive loss of ions and gain
of water by actively taking up ions (primarily through the gills), and
removing excess water by excreting a dilute urine. In SW, teleosts
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counteract the gain of ions and loss of water by drinking SW, absorbing
water and ions through the gut, and secreting excess monovalent ions
through the gills and divalent ions through the kidney. Details of these
mechanisms can be found in excellent reviews published in the last several
years (Marshall, 2002; Evans et al., 2005).

The demands on these ion-regulatory pathways will change as a
function of environmental salinity, feeding, activity, injury, reproductive
state and a variety of stressors. Therefore, control of ion regulation is
critical, and the neuroendocrine system is the major means for regulating
these mechanisms. Several excellent reviews on various aspects of the
hormonal control of osmoregulation in fish have been published previously
(Foskett et al., 1983; Mayer-Gostan et al., 1987; Bern and Madsen, 1992;
McCormick, 1995, 2001; Sakamoto et al., 2001; Sakamoto and
McCormick, 2006). Here, we will focus on the endocrine mechanisms that
control the overall capacity of the ion regulatory mechanisms in teleost
fish, focussing on the osmoregulatory actions of prolactin (PRL), the
growth hormone (GH)/insulin-like growth factor I (IGF-I) axis and
cortisol. We will build on existing reviews and incorporate new data to give
an integrative synthesis of the role of these hormones in the
osmoregulation of teleost fish.
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PRL is a pleiotropic hormone with a wide spectrum of functions in
vertebrates. Many of these functions are related to osmoregulatory
processes (Bole-Feysot et al., 1998; Sakamoto et al., 2003; Harris et al.,
2004). The first evidence of the hyperosmoregulatory role of PRL in fish
came from the studies by Grace Pickford and her collaborators (1959,
1970). Using hypophysectomized FW-adapted killifish, Fundulus
heteroclitus, they demonstrated that PRL treatment was essential for
survival of this species in a hypoosmotic environment. Although pituitary
PRL is not necessary for FW survival of all teleosts, subsequent studies
have established the hyperosmoregulatory role of PRL using other species,
types of studies, and experimental approaches (see Hirano, 1986;
McCormick, 1995; Manzon, 2002).

PRL has been shown to regulate several aspects of the ion regulatory
mechanisms that are characteristic of FW fish. Water permeability of the
gill, gut, and kidney are generally lower in FW- than in SW-acclimated
fish, and PRL has been shown to decrease water permeability in these
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tissues in several teleost species (Table 16.1; see also Manzon, 2002). To
date, the mechanisms and gene products responsible for the actions of PRL
on water permeability have not been identified, though they are likely to
include regulation of tight junctions, membrane composition, and water
channels such as aquaporins.

Treatment with PRL increases the ion uptake capacity of teleosts, and
it is likely that this effect is carried out through regulation of gill chloride

Table 16.1 Physiological evidence for a hyperosmoregulatory role of PRL in teleosts.

Action References

Pituitary
Higher PRL cells activity, synthesis and secretion in FW and BW Nishioka et al. (1988)
relative to SW Mancera et al. (1993)

Martin et al. (1999)
Low osmolality stimulates pituitary PRL secretion in vitro Seale et al. (2003)

Plasma
Higher PRL plasma levels in FW and BW relative to SW Manzon (2002)

Receptors
PRL receptor mRNA levels show a negative relationship with Shiraishi et al. (1999)
salinity (i.e., lower in higher salinities) Sandra et al. (2000)
PRL receptors present in gill chloride cells and in kidney Ng et al. (1991)

Weng et al. (1997)
Santos et al. (2001)

Gills
Exogenous PRL reduces gill Na+,K+-ATPase activity and mRNA Sakamoto et al. (1997)
levels Kelly et al. (1999)

Mancera et al. (2002)
Exogenous PRL stimulates development of chloride cells Herndon et al. (1991)
‘fresh water morphology’ Pisam et al. (1993)

Kidney
Exogenous PRL increases Na+ reabsorption and water excretion, Clarke and Bern (1980)
through stimulation of glomerular size and urine output Braun and Dantlzler (1987)
Contradictory effects on renal Na+,K+-ATPase activity, with Pickford et al. (1970)
increases or no effects Seidelin and Madsen (1997)

Kelly et al. (1999)

Intestine
Exogenous PRL decreases permeability to water and ions and Collie and Hirano (1987)
Na+,K+-ATPase activity Manzon (2002)
Contradictory effects on intestinal Na+,K+-ATPase activity, Kelly et al. (1999)
with increases or no effects Seidelin and Madsen (1999)

Skin
Exogenous PRL increases mucus production by stimulation of Clarke and Bern (1980)
differentiation and proliferation of mucous cells Brown and Brown (1987)



*++ Fish Osmoregulation

cells. Herndon et al. (1991) found that PRL injection in SW-acclimated
tilapia resulted in decreased chloride cell size, typical of FW-acclimated
tilapia. In the Nile tilapia, Pisam et al. (1993) found that treatment with
PRL increased the number of ‘�-cells’ typical of FW-acclimated tilapia and
decreased the number of a-cells typical of SW-acclimated tilapia. Kelly
et al. (1999) have found that the impact of PRL on chloride cells of Sparus
sarba is dependent on the environmental salinity; in hypoosmotic brackish
water PRL reduces chloride cell number and size, whereas in SW this
hormone has no effect. Sakamoto and McCormick (2006) have suggested
that the control of cell turnover (apoptosis and cell proliferation) in
different osmoregulatory epithelia (e.g., gill and gastrointestinal tract) is a
critical feature of the control of osmoregulation by PRL.

It is also likely that PRL affects the transporters that are involved in
ion uptake. However, there is still some uncertainty regarding the
transporters that are most directly involved in ion uptake in teleost fish.
To date, the most favored models include a chloride-bicarbonate
exchanger through which chloride uptake is driven through production of
carbon dioxide. Sodium is thought to be taken up through an apical
sodium channel energized by an apical H+-ATPase. Characterization and
localization of these necessary transporters to fully validate these models
is ongoing, and no information on the role of PRL in regulating these
transporters is currently available. This hormone has variable effects on
gill Na+,K+-ATPase activity among teleost species (see McCormick,
1995). This may stem, in part, from differences in the relative importance
of the Na+,K+-ATPase pump in ion uptake among teleosts (in most
teleosts gill Na+,K+-ATPase activity is higher in SW, but in others it is
lower), their relative euryhalinity, and the salinity at which the studies
were carried out.

The activity of PRL cells is under hypothalamic and extra-
hypothalamic control. Decreases in plasma osmolality result in increased
PRL synthesis and release (Seale et al., 2003). In addition, other hormones
such as cortisol decrease PRL release (Borski et al., 2002). At the
hypothalamic level, dopamine has a clear inhibitory effect on PRL cells
(Nishioka et al., 1988). In mammals, a specific prolactin-releasing
hormone peptide (Pr-RP) has been described, and in recent years, a Pr-RP
has also been identified in teleosts (see Sakamoto et al., 2003, 2005;
Fujimoto et al., 2006). This peptide is synthesized in hypothalamic
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neurons, with axons ending close to PRL cells in the rostral pars distalis of
the pituitary (Sakamoto et al., 2003). This peptide can stimulate PRL cells,
increasing synthesis and release of this hormone to systemic blood. In
addition, in the amphibious, euryhaline mudskipper (Periophthalmus
modestus) molecular studies have demonstrated a strong relationship
between expression of Pr-RP and environmental salinity, with higher Pr-
RP expression in fish acclimated to freshwater and terrestrial
environments relative to SW conditions (Sakamoto et al., 2005). The
presence of Pr-RP in peripheral organs (like gut mucus cells) suggests the
possibility of other actions, including effects on hormone expression
outside of the pituitary, and even direct actions on osmoregulatory tissues
(see Sakamoto and McCormick, 2006).
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GH is a member of the GH/PRL family with a role in osmotic acclimation
(McCormick, 1995) as well as growth and energy metabolism in fish
(Björnsson, 1997). GH causes both local and systemic production of IGF-
I, the latter being produced primarily in the liver. IGF-I carries out many
of the growth-promoting actions of GH, though GH can also have direct
actions on target tissues. Also, in carrying out its osmoregulatory function
in fish, GH appears to work—at least in part—by increasing circulating
IGF-I and production of IGF-I by the target tissue itself (Sakamoto and
Hirano, 1993).

Smith (1956) was the first to demonstrate that GH treatment
increased the capacity of trout to move from FW to SW. Later, Bolton et al.
(1987) demonstrated that these effects were relatively rapid and
independent of the growth promoting actions of GH. McCormick et al.
(1991) demonstrated that IGF-I was as potent as GH in increasing the
salinity tolerance of rainbow trout. Increased salinity tolerance in response
to GH treatment has also been demonstrated in several non-salmonid
teleosts, including tilapia and killifish (Mancera and McCormick, 1998a,
1999).

GH and IGF-I impacts on hypoosmoregulatory tissue are exerted in
part through their influence on gill chloride cells. Many studies of
salmonids have shown an effect of GH and/or IGF-I treatment on the
number, size and specific ultrastructural features of gill chloride cells (see
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references in McCormick, 2001). Sakamoto and McCormick (2006) have
hypothesized that this impact of GH and IGF-I may be through the control
of cell turnover and differentiation in the gill. This effect would be
consistent with the known proliferative and anti-apoptotic roles of IGF-I
in many vertebrate tissues (Wood et al., 2005). It should be noted,
however, that such effects have yet to be demonstrated in osmoregulatory
tissues of fish.

GH and IGF-I are also involved in the upregulation of transporters
critical to salt secretion by the gill. Both Na+,K+-ATPase and the
Na+,K+,2Cl– cotransporter (NKCC) are upregulated by GH (Pelis and
McCormick, 2001). Although GH has not been shown to have direct (in
vitro) effects on these transporters, IGF-I has been shown to increase gill
Na+,K+-ATPase, both in vivo and in vitro (Madsen and Bern, 1993;
Seidelin and Madsen, 1999). These impacts on specific transporters may
be part of a proliferation and differentiation pathway for the development
of salt secreting chloride cells in the gill. Surprisingly, the impact of GH
and IGF-I on osmoregulatory tissues other than the gill has received little
attention. To date, what is known suggests that the action of GH and IGF-
I on salt secretory capacity is primarily through its impact on gill physiology
(Seidelin and Madsen, 1999).

IGF-I binding proteins are known to play a critical role in regulating
the interaction of IGF-I with its receptor (Wood et al., 2005). Recently,
Shepherd et al. (2005) have shown that plasma levels of three IGF binding
proteins (21-, 42- and 50-kDa) are higher after salinity acclimation. To our
knowledge, this is the only report of the possible role of binding proteins
in ion regulation. High-affinity, low-capacity IGF-I binding sites
characteristic of receptors have recently been found in Atlantic salmon
gill, and are most abundant in gill chloride cells (McCormick, unpublished
results). Reinecke et al. (1997) present evidence that local production of
IGF-I in the gill occurs primarily in chloride cells (Tables 16.2-16.4).
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Cortisol is the major corticosteroid produced by the interrenal tissue of
teleost fish. This hormone has several established physiological roles
related to osmoregulation, intermediary metabolism, growth, stress and
immune function (Wendelaar Bonga, 1997; Mommsen et al., 1999).
Evidence for the osmoregulatory role of cortisol in fish has been compiled
in excellent reviews (McCormick, 1995, 2001; Sakamoto et al., 2001;
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Table 16.2 Physiological evidence for a hyperosmoregulatory role of GH in salmonids.

Action References

Pituitary

Higher GH cell activity, synthesis and secretion in SW Nishioka et al. (1988)
relative to FW Sakamoto et al. (1993)

Björnsson (1997)

Plasma
Higher plasma GH levels and metabolic clearance rate of GH Sakamoto et al. (1990)
during smolting and after transfer from FW to SW Björnsson (1997)

Receptors
GH receptors present at high levels in gill, kidney and intestine Sakamoto and Hirano (1991)

Gills
Exogenous GH increases gill Na+,K+-ATPase activity and Boeuf et al. (1994)
mRNA levels Madsen et al. (1995)

McCormick (1995)
Seidelin and Madsen (1999)

Exogenous GH stimulated proliferation of chloride cells with See McCormick (1995)
“seawater morphology” Sakamoto and McCormick

(2006)
Exogenous GH increased abundance of Na+-K+-2Cl– Pelis and McCormick (2001)
cotransporter

Kidney
GH treatment has not effect on kidney Na+-K+-ATPase activity Madsen et al. (1995)

Intestine
Exogenous GH induces ‘seawater morphology’ in the mucosa of Nonnotte et al. (1995)
the middle intestine of Salmo salar previous to smoltification
Exogenous GH increases the drinking response in S. salar Fuentes and Eddy (1997)
pre-smolts after transfer to SW

Evans, 2002). However, in recent years, new aspects of the physiology of
cortisol in fish have arisen, and it is on these that we will focus our
attention.

This hormone is considered a classical SW-promoting hormone, and
evidence has shown a hypoosmoregulatory role of cortisol in several
teleosts. Cortisol decreased plasma ion levels and osmolality in SW-
adapted teleosts and enhanced salinity tolerance after transfer from low-
salinity water to high-salinity water. This effect is due to increases in gill
chloride cell size and density induced by cortisol treatment (McCormick,
1995, 2001). In addition, this hormone enhanced expression of gill
Na+,K+-ATPase �-subunit and gill Na+,K+-ATPase activity in salmonid
and no-salmonid species (Madsen et al., 1995; Seidelin et al., 1999;
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Table 16.3 Physiological evidence for an osmoregulatory role of GH in non-salmonids.

Action References

Pituitary
GH cells activation is depending on the species studied and Nishioka et al. (1988)
the environmental salinity Mancera and McCormick

(1998b)

Plasma
GH levels behave differently depending on the species studied Nishioka et al. (1988)
and the environmental salinity Mancera and McCormick

(1998b)

Receptors
GH binding found in renal tubule of gilthead sea bream Munoz-Cueto et al. (1996)

Gill and operculum
Exogenous GH increases salinity tolerance, opercular chloride Flik et al. (1993)
cell number and gill Na+,K+-ATPase activity in tilapia Xu et al. (1998)
(O. mossambicus) and mummichog (Fundulus heteroclitus) Mancera and McCormick

(1998a)
Exogenous GH did not cause any significant changes in gill Deane et al. (1999)
Na+,K+-ATPase activity or �- and �-subunit mRNA levels Kelly et al. (1999)
in silver sea bream (Sparus sarba)
Exogenous GH increases gill Na+,K+-ATPase activity in Sangiao-Alvarellos et al.
gilthead seabream (Sparus aurata) (2006)

Kidney
Exogenous GH reduces Na+,K+-ATPase activity in SW- and Kelly et al. (1999)
BW-acclimated silver seabream (Sparus sarba)

Mancera et al., 2002; Laiz-Carrión et al., 2003). Finally, cortisol stimulated
expression and abundance of Na+-K+-2Cl– cotransporter in the gills of
FW-acclimated S. salar (Pelis and McCormick, 2001).

At the intestinal level, cortisol stimulated Na+,K+-ATPase activity,
together with ion and water absorption, thus helping adaptation to high
environmental salinity (Veillette and Young, 2005). Also, an improved
drinking response after transfer to SW has been observed in Oncorhynchus
mykiss and S. salar treated with this hormone (Fuentes et al., 1996).

In addition to the classical hypoosmoregulatory role of cortisol, and
according to several evidences (see Table 16.5), a new role of this hormone
either in ion uptake in FW- or BW-adapted fish has been suggested.
McCormick (2001), in his excellent revision of this topic, proposed a ‘dual
osmoregulatory’ role for cortisol: (1) a stimulatory action on ion secretion
in cooperation with GH/IGF-I axis in hyperosmotic environments; and
(2) an increase of ion uptake in cooperation with PRL in hypoosmotic
environments.
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Table 16.4 Physiological evidence for an osmoregulatory role of IGF-I in salmonids and
non-salmonids.

Action References

Plasma
IGF-I levels increased during smolting and SW acclimation Sakamoto and Hirano (1993)
IGF-I binding proteins levels are altered after SW exposure of Shepherd et al. (2005)
rainbow trout

Receptors
High affinity, low capacity IGF-I binding in salmon gill McCormick (unpublished)
IGF-I receptor immunoreactivity present in chloride cells McCormick (unpublished)

Gill
IGF-I mRNA levels increase after exogenous GH and transfer Sakamoto and Hirano (1993)
to SW in salmonids and tilapia (O. mossambicus) Weng et al. (2000)
Exogenous IGF-I increases salinity tolerance, gill Na+,K+-ATPase McCormick (1995)
activity and development of chloride cells Mancera and McCormick

(1998a)
Seidelin and Madsen (1999)

IGF-I immunoreactivity present in chloride cells Reinecke et al. (1997)

A large number of binding studies in fish have found evidence for a
single class of corticosteroid receptors (CR) (see references in Prunet et al.,
2006). However, in the last several years, molecular techniques have
demonstrated the presence of genes in several teleost species related to the
mammalian glucocorticoid (GR) and mineralcorticoid receptors (MR).
Fish GR has been characterized in several species (Oreochromis
mossambicus, Paralichthys olivaceus), with a second isoform present in some
species (O. mykiss, Haplochromis burtoni). In addition, MR has been
molecularly characterized in O. mykiss and H. burtoni. Using a transfected
cell line, Sturm et al. (2005) found that the rainbow trout MR (rtMR) has
high transactivation efficiency for both aldosterone and 11-
deoxycorticosterone (DOC), similar to the mammalian MR. Prunet et al.
(2006) suggest that DOC, present in the plasma of some teleosts at levels
that could activate the rtMR, might be a mineralocorticoid in fish. It may
be possible that the teleost MR is involved in the ‘dual osmoregulatory’
role (ion secretion and uptake) of cortisol in teleost fish. However, the
physiological function of the MR in fish and the possible physiological
relevance of DOC remains to be established.
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Table 16.5 Physiological evidence for a hyperosmoregulatory role of cortisol.

Action References

Plasma
Transfer from SW to FW transiently increases plasma cortisol Mancera et al. (1994)
levels McCormick (2001)

Effects of cortisol treatment
Restored plasma osmolality and ion levels in hypophysectomized McCormick (2001)
eels, goldfish and bowfin
Increased surface area of gill chloride cells and the influx of Laurent and Perry (1990)
sodium and chloride in FW rainbow trout, tilapia, eel and catfish Perry et al. (1992)
Stimulated whole-body calcium uptake and the branchial calcium Flik and Perry (1989)
pump in freshwater rainbow trout
Enhanced H+-ATPase activity in gills of salmonids, possibly Lin and Randall (1995)
involved in sodium uptake in hypo-osmotic environments Marshall (2002)
Increased ion regulatory capacity after transfer of Sparus Mancera et al. (1994)
aurata to low salinity environments
Stimulated gill Na+,K+-ATPase activity, plasma osmolality Mancera et al. (2002)
and ion levels in BW-adapted S. aurata

Interactions with other hormones
A positive interaction of cortisol with PRL for maintenance Parwez and Goswami (1985)
of ion balance in FW-acclimated channel catfish Ictalurus Eckert et al. (2001)
punctatus and stinging catfish Heteropneustes fossilis
A positive interaction of cortisol with PRL for promoting the Zhou et al. (2003)
transepithelial resistance and potential of cultured branchial
epithelia from FW rainbow trout

��������������������

In addition to the independent osmoregulatory actions of PRL, GH/IGF-I
axis and cortisol, there is substantial evidence indicating the existence of
synergy and antagonism of these hormones with one another.
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Consistent with its role in promoting acclimation to low environmental
salinities, PRL antagonizes the salt-secretory actions of both cortisol and
GH (O. mykiss: Madsen and Bern, 1992; S. salar: Boeuf et al., 1994; S.
trutta: Seidelin and Madsen, 1997). Seidelin and Madsen (1997) found
that PRL could reverse all of the increases in hypoosmoregulatory ability
induced by cortisol, but did not affect the capacity of cortisol to increase
gill Na+,K+-ATPase activity. They suggested that an interaction of PRL
and cortisol on salt secretory capacity may occur in non-branchial tissue
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such as the intestine. Cortisol has been shown to rapidly decrease the
release of PRL from the tilapia pituitary (Borski et al., 1991).

As outlined above, cortisol also has an apparent role in ion uptake,
and there is evidence for a positive interaction of exogenous treatment
with cortisol and PRL for maintenance of ion balance in FW fish (Parwez
and Goswami, 1985; Eckert et al., 2001). In S. aurata, a greater activation
of pituitary PRL and ACTH cells have been shown to occur in BW-
acclimated fish relative to SW-acclimated fish, suggesting a possible
cooperation of PRL and cortisol in the control of osmoregulation at low
salinities has also been suggested (Mancera et al., 1993, 2002). Using an
in vitro gill cell preparation, it has been demonstrated that PRL and cortisol
act synergistically in order to promote transepithelial resistance and
potential (Zhou et al., 2003).
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It has also been demonstrated that treatment with PRL can antagonize the
hyperosmoregulatory actions of GH and IGF-I in salmonids (O. mykiss:
Madsen and Bern, 1992; S. salar: Boeuf et al., 1994; S. trutta: Seidelin and
Madsen, 1997, 1999). This effect has been shown to occur at the level of
specific ion transporters (gill Na+,K+-ATPase), and chloride cell number
and morphology, resulting in differences in decreased whole animal
performance (higher plasma ions) in SW. This antagonistic action of PRL,
along with the lower PRL levels seen in BW, may explain the greater
efficacy of GH treatment on salt-secretory capacity in BW relative to FW
(Bolton et al., 1987; McCormick, 1996). Currently, it is thought that this
antagonism occurs primarily at target tissues, as we are not aware of any
studies indicating that GH and PRL affect one another’s synthesis or
secretion.

����������# !��������� !�"

An important synergy of the GH axis and cortisol to improve salinity
tolerance and salt-secretory capacity has been demonstrated in salmonid
and non-salmonid species. This cooperation is mediated by increased
expression of gill Na+,K+-ATPase subunits, gill Na+,K+-ATPase activity,
and abundance of Na+-K+-2Cl– cotransporter in gill chloride cells
(Madsen, 1990; McCormick, 1996; Mancera and McCormick, 1999; Pelis
and McCormick, 2001; McCormick, 2001). GH has been shown to
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increase the abundance of gill cortisol receptors in two species of
salmonids (O. kisutch and S. salar) (Shrimpton et al., 1995; Shrimpton and
McCormick, 1998), and this may explain a substantial part of the
interaction between GH and cortisol. Seidelin et al. (1999) found an
additive effect of IGF-I and cortisol on gill chloride cell number and
Na+,K+-ATPase activity, but to date, no one has examined whether IGF-I
can increase the number of gill cortisol receptors. Another possible
mechanism of IGF-I and cortisol interaction is through a possible anti-
apoptotic action of IGF-I on gill chloride cells, permitting cortisol to affect
a greater number of partially or fully differentiated chloride cells.

In addition to interactions at target tissues, GH, IGF-I and cortisol are
likely to interact so as to affect one another’s synthesis and secretion,
though surprisingly little research has been done in this area. GH has been
shown to increase the sensitivity of the interrenal tissue to
adrenocorticotropic hormone (ACTH) in vitro and in vivo, thus enhancing
cortisol release (Young, 1988). Exogenous cortisol has been shown to
decrease the circulating levels of IGF-I (Peterson and Small, 2005;
McCormick, unpublished results). It is important to remember that these
hormones have active roles in growth and energy mobilization, and thus
their feedback mechanisms may reflect their involvement in processes
other that just osmoregulation.

����
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The control of the osmoregulatory system of teleosts involves several
hypophysial and extra hypophysial hormones (PRL, GH and cortisol),
which play an important role in osmotic acclimation (McCormick, 1995,
2001; McCormick and Sakamoto, 2006). It is a well-established fact that
PRL has an important role in the FW acclimation of many teleosts, though
the mechanisms of ion regulation controlled by this hormone have not
been fully elucidated. In contrast, the osmoregulatory role of the GH/IGF-I
axis appears to be more highly species-dependent. In salmonids this axis
has a hypoosmoregulatory role acting clearly as a SW-adapting hormone.
However, in non-salmonid species, the evidence is contradictory, with GH
exhibiting an apparent hypoosmoregulatory role in some species, and no
clear osmoregulatory role in others. Finally, cortisol has been shown to
have a role in SW acclimation in both primitive and advanced teleost fish.
However, in recent years, evidence also suggests a role for cortisol in ion
uptake in low-salinity water-adapted fish. This new evidence suggests a
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‘dual osmoregulatory’ role for cortisol, with the classic role of stimulation
of ion secretion in hyperosmotic media (in cooperation with GH and
IGF-I), and an additional role of increasing ion uptake in hypoosmotic
environments (in cooperation with PRL).
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