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Abstract.--Atlantic salmon Salmo salar, steelhead S. gairdneri, and several species of Pacific 
salmon Oncorhynchus spp. undergo transformation from stream-dwelling parr to seaward-mi- 
grating smolts. Physiological, behavioral, morphological, and biochemical changes occur in fresh 
water in preparation for marine life. The preparatory nature of these adaptations is reviewed and 
discussed with particular emphasis on osmomgulation, metabolism, and growth. Functional 
changes in gill, kidney, gut, and urinary bladder result in increased salinity tolerance and 
hypoosmomgulatory ability. Some or all of these preparatory physiological changes may reverse in 
the absence of exposure to seawater. Changes in lipid, protein, and carbohydrate metabolism, 
oxygen consumption, and aerobic respiratory enzyme activity suggest increased catabolism during 
parr-smolt transformation. These transient changes in catabolism may reflect energetic demands of 
the extensive differentiation occurring during transformation. Although them is increased growth 
during parr-smolt transformation, evidence for a hypothesized increase in scope for growth after 
transformation is not convincing. We suggest that different aspects of the transformation have 
different developmental patterns, the timing of which is species-dependent and responsive to 
environmental change. Phylogenetic comparison of the differentiation of salmonid hypoosmomgu- 
latory mechanisms and migratory behavior suggests that their evolution has occurred through 
heterochrony. 

Transformation of the stream-dwelling parr to 
the seaward-migrating smolt is a significant life 
history event in many salmonids. Various mor- 
phological, physiological, and behavioral changes 
occur seasonally (usually in spring), develop over 
a period of 1-2 months, and are presumably 
adaptive for downstream migration and residence 
in the marine environment (see Table 1 and re- 
views by Hoar 1976; Folmar and Dickhoff 1980; 
Wedemeyer et al. 1980). Parr-smolt transforma- 
tion has for some time been of interest as a 

developmental process (Hoar 1939; Bern 1978) 
and recently has come under more intense scru- 
tiny as an important factor in the performance of 
hatchery-reared salmonids in ocean ranching and 
intensive aquaculture (Wedemeyer et al. 1980). 

In the present undertaking, we review changes 
in osmoregulation, metabolism, and growth that 
occur during the parr-smolt transformation and 
that are to some degree interrelated. Substantial 
information exists concerning changes in salinity 
tolerance and metabolism, though much remains 
to be done in this area. Less is known concerning 
growth, and our discussion centers on what is not 
known. By stating hypotheses concerning the 
interrelationships of physiological changes during 
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the parr-smolt transformation, we hope to spur 
more focused research in this most fascinating 
and important area. In reviewing each of these 
areas we develop a common hypothesis: physio- 
logical changes during the parr-smolt transforma- 
tion are preparatory adaptations, preparatory be- 
cause they anticipate a change in environment and 
adaptive because they increase survival and fit- 
ness in a new environment. 

Experiments conducted on the parr-smolt 
transformation have, of necessity, examined iso- 
lated aspects of development. Evidence for devel- 
opmental changes are then unified under the sin- 
gle term "smoltification." This has often led to 
two disparate views that are equally wrong: that 
the transformation is a single and common proc- 
ess, or that it is a series of unconnected changes. 
Simpson (1985) stated the problem the following 
way: 

Perhaps we should also be concerned lest our use of 
the term "smoltification" encourages a predilection 
to the belief that the process is a single one with a 
single or organically linked set of effectors. Stoolting 
ought rather to be seen as the result of a large number 
of distinct processes--the change to particular pat- 
terns of growth, the elaboration of neurons associated 
with long-term memory, the development of different 
patterns of behaviour, major changes in metabolism 
and, finally, those changes in gill structure which 
permit the fish to pass from a hypo- to a hypertonic 
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environment. There seems to me no a priori reason 
for supposing that these processes evolved simulta- 
neously, or for supposing that they are linearly inter- 
dependent or have functionally linked endocrine me- 
diators. 

If we are successful in this review, we shall 
have shown or suggested both the distinction 
between these processes and their interrelations. 
By adopting a comparative view, we hope to 
establish that different aspects of the parr-smolt 
transformation are present in different salmonid 
species and that their presence and developmental 
pattern are related to the timing and duration of 
anadromy of a population or species. 

Osmoregulation 

Ontogeny of Salinity Tolerance 

Ontogenetic changes in salinity tolerance (de- 
fined here as the ability to survive seawater 
>30% o) have been found in virtually all salmonid 
species investigated. Whereas salmonid eggs can- 
not survive more than a few days in seawater, the 
posthatch alevin has even poorer survival, pre- 
sumably due to loss of the chorion (Weisbart 
1968). Salinity tolerance of Atlantic salmon Saltno 
salar alevins decreases as the water-impermeable 
vitelline membrane decreases in favor of a water- 

permeable epithelium (Parry 1960; Talbot et al. 
1982). In contrast, salinity tolerance of chum 
salmon Oncorhynchus keta increases during de- 
velopment of the alevin (Kashiwagi and Sato 
1969). 

After resorption of the yolk sac, salinity toler- 
ance of all salmonids increases with size and age, 
and is closely tied to, and probably caused by, 
increased ability to regulate plasma ions and os- 
molarity following exposure to seawater 2 (Parry 
1958, 1960; Houston 1961; Conte and Wagner 
1965; Conte et al. 1966; Wagner 1974b; McCor- 
mick and Naiman 1984b; Ouchi 1985). Conte and 
Wagner (1965) and McCormick and Naiman 
(1984b) concluded that size, not age, is the pri- 
mary determinant of increased seawater survival 
for steelhead Saltno gairdneri and brook trout 
Salvelinus fontinalis, respectively. Size-depen- 
dent salinity tolerance may be due to a more 

•Chinook salmon (0. tshawytscha) are an apparent 
exception to this rule. Whereas other Oncorhynchus 
species develop increased salinity tolerance through 
increased ability to regulate plasma ions, chinook 
salmon develop an increased tolerance of elevated 
plasma ions (Weisbart 1968). 

favorable surface-area-to-volume ratio for larger 
fish, or to a progressive development of hypoos- 
moregulatory mechanisms with size, or to both. 
By comparing studies of similar design, McCor- 
mick and Naiman (1984b) concluded that salinity 
tolerance was also related to genus: the size at 
which seawater survival occurs is smallest for 

Oncorhynchus species, larger for Saltno species, 
and largest for Salvelinus species. This phyloge- 
netic relationship follows closely the duration of 
marine residence (shortest for Salvelinus species) 
characteristic of each genus, as pointed out by 
Rounsefell (1958) and Hoar (1976). 

There is substantial evidence indicating that 
size-dependent changes in salinity tolerance are 
distinct from the more rapid, seasonally occurring 
changes in salinity tolerance associated with the 
parr-smolt transformation. Salinity tolerance of 
seasonally migrating Atlantic salmon, rainbow 
trout Saltno gairdneri and coho salmon On- 
corhynchus kisutch increases rapidly over a pe- 
riod of 1-2 months, coinciding with the normal 
period of migration and visible smolt characteris- 
tics (Conte and Wagner 1965; Komourdjian et al. 
1976; Clarke et al. 1978; Saunders et al. 1983, 
1985; McCormick et al. 1987). These changes are 
independent of temperature (except as it affects 
developmental rate), and are responsive to photo- 
periodic cues (Saunders and Henderson 1970; 
Wagner 1974a; Komourdjian et al. 1976; Clarke et 
al. 1978; Johnston and Saunders 1981; Clarke et 
al. 1985; Saunders et al. 1985; McCormick et al. 
1987). 

Although some seasonal periodicity in salinity 
tolerance may occur at all life stages (Hoar 1965; 
Wagner 1974a), the ability to manifest large sea- 
sonal changes in salinity tolerance is size-depen- 
dent. Rainbow trout do not respond to seasonal 
cues with increased salinity tolerance until they 
are at least i0 cm long (Conte and Wagner 1965). 
Similar size-related limitations in the expression 
of parr-smolt transformation have been found for 
coho salmon (Clarke et al. 1978) and Atlantic 
salmon (Elson 1957; Parry 1960). 

In distinguishing between size-dependent 
changes in salinity tolerance and the size-depen- 
dent parr-smolt transformation, the degree of 
salinity tolerance becomes important. Atlantic 
and coho salmon parr of 10-12 cm can routinely 
tolerate (i.e., survive for many days) a salinity of 
30%o (Saunders and Henderson 1969; Clarke and 
Nagahama 1977). These fish may begin to die after 
several weeks, however, and growth is inevitably 
poor. Such differences in the degree of salinity 
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tolerance are not limited to the parr stage. Smolt- 
size (14-17 cm) Atlantic salmon that are denied 
seasonal cues through exposure to continuous 
light can adapt to 30%o seawater, but cannot 
survive in 40%o as can normal smolts, and exhibit 
poor feeding and growth in seawater (Saunders et 
al. 1985; McCormick et al. 1987). This distinction 
between the merely adequate or short-term sea- 
water survival of parr and the complete adaptabil- 
ity of smolts is an important one. Its basis lies in 
the increased hypoosmoregulatory ability of 
smolts (Parry 1960; Conte and Wagner 1965; 
Clark et al. 1978; Boeuf et al. 1978; Saunders and 
Henderson 1978; Hogstrand and Haux 1985) and 
perhaps other transport-related phenomena such 
as food conversion efficiency. Since parr can 
survive in seawater for extended periods of time, 
however, one can justifiably ask what the adap- 
tive basis of increased salinity tolerance is at the 
time of smolting. Rapid acclimation to higher 
salinities with fewer osmotic perturbations may 
permit rapid movement through estuaries (Cher- 
nitsky 1983; McCormick et al. 1985), and imme- 
diate resumption of physiological and behavioral 
processes that might otherwise result in increased 
predation and interrupted feeding and growth. 

The developmental processes that result in sea- 
sonally increased salinity tolerance and hypoos- 
moregulatory ability are apparently reversible if 
fish remain in fresh water. Rapid summer de- 
creases in salinity tolerance have been observed 
in rainbow trout (Conte and Wagner 1965), coho 
salmon (Mahnken et al. 1982), and Atlantic 
salmon (Evropeytseva 1962). Generally known as 
"desmolting," this process may also result in 
reversion to a parr-like appearance (see Folmar et 
al. 1982). Whether or not "desmolting" results in 
a reversal of all physiological changes associated 
with the parr-smolt transformation will be dis- 
cussed below. 

Functional Changes in Osmoregulatory 
Organs 

Teleosts normally maintain their plasma osmo- 
!arity within a narrow range (290-340 mOsmol/L) 
irrespective of the salinity of the external me- 
dium, and failure to do so for prolonged periods 
results in death. The transition from fresh water to 

seawater requires a reversal from net ion influx to 
net ion efflux which is regulated primarily by the 
gills but also involves the kidney, gut and urinary 
bladder (for a review of osmoregulation in tel- 
eosts, see Evans 1979; Foskett et al. 1983). In 
most teleosts this reversal is initiated by exposure 

to a hyperosmotic environment. As the following 
discussion should demonstrate, seasonal changes 
in structure or function (differentiation) of the 
osmoregulatory machinery, which occur prior to 
and in anticipation of exposure to seawater, are 
responsible for increased salinity tolerance during 
the parr-smolt transformation. This seasonal dif- 
ferentiation is likely to be the result of qualitative 
and quantitative changes in gene expression, the 
hormonal control of which has yet to be eluci- 
dated (Dickhoff and Sullivan 1987, this volume). 

In considering the mechanisms of osmoregula- 
tory change (as well as metabolism and growth), 
we shall consider only those salmonid species 
which show a rapid (1-2 month), reversible, sea- 
sonally cued increase in salinity tolerance. In this 
group, Atlantic, coho, and masu salmon On- 
corhynchus rnasou and steelhead have received 
the greatest attention. There are, however, inher- 
ent difficulties in conducting and comparing stud- 
ies on a developmental phenomenon that occurs 
over many weeks but which has no absolute 
morphological criterion (Gorbman et al. 1982). 
Many researchers have used appearance (often 
the degree of silvering or fin darkening) as a sole 
criterion to distinguish smolts from nonsmolts. In 
addition to the subjective nature of this criterion, 
it has proved to be highly variable under artificial 
culture conditions and is often "uncoupled" from 
other aspects of the parr-smolt transformation 
(Wedemeyer et al. 1980). Seasonal changes in 
temperature may introduce physiological changes 
independent of developmental phenomena (Vir- 
tanen and Oikari 1984). Differences in methodol- 
ogy, species, and size further increase the diffi- 
culties of assessing experimental results. In most 
cases, the developmental process is clear enough 
(or the experimental condition controlled enough) 
in spite of these confounding factors. We shall 
attempt to point out the exceptions, particularly 
when conflicting results are apparent. 

Gills.--For a variety of euryhaline teleosts, gill 
Na+,K+-ATPase activity increases after transfer 
from fresh water to seawater (Epstein et al. 1967; 
Kirschnet 1980). Ionic and electrical gradients 
generated by this enzyme are central to current 
models of branchial ion fluxes (Maetz and Garcia- 
Romeau 1964; Silva et al. 1977). Increases in gill 
Na+,K+-ATPase occur in several salmonid spe- 
cies in freshwater prior to seawater entry. Such 
increases in coho salmon (Zaugg and McLain 
1970; Giles and Vanstone 1976a; Lasserre et al. 
1978), chinook salmon (Hart et al. 1981; Buckman 
and Ewing 1982), rainbow trout (Zaugg and Wag- 
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her 1973), and Atlantic salmon (McCartney 1976; 
Saunders and Henderson 1978; Boeuf et al. 1985; 
McCormick et al. 1987) occur seasonally and in 
phase with migration and increased salinity toler- 
ance (Figure 1). Most of the gill Na+,K+-ATPase 
activity and ion transport capacity resides in 
mitochondria-rich chloride cells (Epstein et al. 
1980; Foskett and Scheffey 1982). Chloride cells 
increase in number in gill opercular epithelium 
(Loretz et al. 1982) and change morphology in gill 
filaments (Richman 1985) of freshwater coho 
salmon smolts. Langdon and Thorpe (1985) found 
increased size and number of chloride cells in 

Atlantic salmon in early spring just before attain- 
ment of maximum salinity tolerance. 

D. R. N. Primmett, F. B. Eddy, M. S. Miles, 
C. Talbot, and J. E. Thorpe (personal communi- 
cation) measured whole-body Na + fluxes in juve- 
nile Atlantic salmon; these fluxes are generally 
assumed to reflect the function of gill epithelium. 
During parr-smolt transformation, Na + flux 
changed from net influx (characteristic of fresh- 
water teleosts) to net efflux. However, net Na + 
efflux is not an absolute requirement for increased 
salinity tolerance since maximum salinity toler- 
ance was achieved after Na + flux had returned to 

a net influx. Iwata et al. (in press) found develop- 
mental changes in whole-animal transepithelial 
potential (TEP) of coho salmon. The TEP of coho 

salmon in fresh water decreased gradually from 6 
mV in early February to -12 mV in mid-April. In 
fish transferred to seawater for 12 h, TEP was 5 
mV in February and increased to 16-18 mV in 
April through August. Taken together, these re- 
sults indicate that developmental changes in 
mechanisms for ion transport found in freshwater- 
adapted smolts are important for seawater adap- 
tation. 

Kidney and urinary bladder.--The urine flow 
and water excretory rates of rainbow trout smolts 
in fresh water decrease relative to those in both 

pre- and postsmolts and are due entirely to a 
reduction in glomerular filtration rate (Holmes 
and Stainer 1966). Urine excretory rates of so- 
dium and potassium and total osmolarity are also 
reduced in smolts. (Decreased urine flow and 
glomerular filtration occur in euryhaline teleosts 
after exposure to seawater [Hickman and Trump 
1969], and the results of Holmes and Stainer may 
be interpreted as a preparatory adaptation.) How- 
ever, the "seasonal" temperatures, variable tim- 
ing of measurements, and use of appearance as 
the sole smolt criterion make it difficult to inter- 

pret these results. Recent work by Eddy and 
Talbot (1985) indicates that urine production by 
juvenile Atlantic salmon (> 15 cm) increases dur- 
ing spring coincident with increasing gill Na +,K +- 
ATPase activity. These conflicting results con- 
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FIGURE 1.--Functional changes in osmoregulatory organs during the parr-smolt transformation. Functional 
changes normally associated with osmoregulation in seawater occur in fresh water and result in increased 
hypoosmoregulatory ability and salinity tolerance. In the absence of exposure to seawater, these changes are 
reversible. 
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cerning alteration of kidney function during parr- 
smolt transformation are, at present, unexplained. 

Declines in kidney Na +,K+-ATPase activity in 
juvenile Atlantic salmon in spring were reported 
by McCartney (1976). Virtanen and Soivio (1985) 
reported that kidney Na+,K+-ATPase activity of 
juvenile Atlantic salmon raised in brackish water 
fluctuates considerably during spring, falling in 
early spring then rising to high levels in mid spring 
and falling again in late spring. S. D. McCormick 
and R. L. Saunders (unpublished data) found no 
seasonal change in kidney Na+,K+-ATPase activ- 
ity in freshwater-reared Atlantic salmon, nor was 
the activity level of this enzyme different from 
that in fish exposed to continuous light (conditions 
that inhibit physiological changes associated with 
transformation). It should be noted that, unlike 
gill Na+,K+-ATPase activity, kidney Na+,K +- 
ATPase activity of Atlantic salmon changes 
slightly or not at all following increases in envi- 
ronmental salinity (Virtanen and Oikari 1984; Mc- 
Cormick et al., unpublished data). 

Loretz et al. (1982) found that Na + and Cl- 
reabsorption by the urinary bladder of freshwater- 
adapted coho salmon did not change between 
March and June. However, developmental 
changes in the urinary bladder were detected 
when coho salmon were experimentally adapted 
to seawater over this same period. In May, when 
seawater survival was low, Na + and Cl- reab- 
sorption by the urinary bladder of seawater- 
adapted fish was at high levels characteristic of 
salmon in fresh water. In June, when seawater 
survival was high, Na + and Cl- reabsorption was 
abolished. While no functional differentiation of 

the urinary bladder was apparent in fresh water, a 
clear increase in its capacity to respond to sea 
water had occurred. 

Gastrointestinal tract.--Increased drinking rate 
and absorption of water and salts across gut 
epithelia occur following adaptation of euryhaline 
telosts to seawater. Collie and Bern (1982) found 
that the capacity for net fluid absorption of the 
intestine increased twofold in freshwater-adapted 
juvenile coho salmon between March and May, 
and that high values in May were similar to those 
of salmon adapted to seawater. Reversion of 
intestinal net fluid absorption to prespring levels 
occurred in early autumn in fish held in fresh 
water. Developmental changes in drinking rate 
associated with the parr-smolt transformation 
have yet to be investigated. 

Consequences of Developmental Changes 
on Osmoregulation in Fresh Water 

The previous section has established that sea- 
sonal increases in salinity tolerance and hypoos- 
moregulatory ability occur in conjunction with 
increases in gill Na+,K+oATPase activity, quan- 
tity of gill chloride cells, intestinal net fluid ab- 
sorption and other osmoregulatory changes that 
are characteristic of seawater-adapted teleosts but 
which occur prior to seawater entry (Figure 1). If 
these mechanisms are detectable in smolts in 

fresh water, are they also fully functional in vivo, 
and do they, therefore, produce osmoregulatory 
difficulties (water gain and ion loss) for smolts in 
fresh water? D. N. R. Primmett, F.B. Eddy, 
M. S. Miles, C. Talbot, and J. E. Thorpe (per- 
sonal communication) have recently argued that 
increases in ion fluxes across the body surface, 
which are presumably hormone-induced, precede 
and are responsible for increases in gill Na +,K +- 
ATPase activity and other osmoregulatory 
changes during transformation. Whereas we have 
stressed the adaptive nature of these changes, 
these researchers suggest they are primarily a 
consequence of the loss of freshwater osmoregu- 
latory capacity (see also Langdon and Thorpe 
1985; Simpson 1985). It should be stressed, how- 
ever, that in each of these scenarios a seasonal 
differentiation occurs that results in increased 

salinity tolerance, which is clearly adaptive for a 
seaward-migrating fish. It is still unclear that all 
the osmoregulatory changes portrayed in Figure 1 
are functional in the freshwater smolt (e.g., 
Na+,K+-ATPase increases may be demonstrable 
by enzymological assay of gill homogenates but 
the enzyme may not be functionally active in 
vivo), or whether they require induction by expo- 
sure to seawater. In either event, we emphasize 
that the physiological mechanisms necessary for 
long-term survival in seawater take several days 
to develop in euryhaline species (Foskett et al. 
1983); in smolts, these adaptations are already in 
place and may be rapidly induced to become 
functional upon exposure to seawater. 

Decreases in plasma chloride (in the late parr 
stage: Houston and Threadgold 1963) and muscle 
chloride (in migrating smolts: Fontaine 1951) oc- 
cur in Atlantic salmon in fresh water. Plasma 

osmolarity has been reported to decrease during 
smolting of masu salmon (Kubo 1953), to be more 
variable in smolting Atlantic salmon (Koch and 
Evans 1959), and to increase absolutely in post- 
smolt Atlantic salmon (Parry 1961). On the other 
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hand, a number of studies failed to find significant 
'changes in plasma or muscle ions coincident with 
the parr-smolt transformation (see Folmar and 
Dickhoff 1980). 

The variety and conflict of results in the inves- 
tigations cited above suggest that environmental, 
experimental, and species differences may have 
influenced the results. Indeed, regulation of 
plasma and cellular ions of salmonids in fresh 
water can be affected by temperature (Kubo 
1955), size (McCormick and Naiman 1984a), ac- 
tivity (Wood and Randall 1973), water quality 
(Eddy 1982), pH (Saunders et al. 1983), and stress 
(Schreck 1982). We have recently conducted a 
study in which rearing temperature for Atlantic 
salmon was held constant (5-8øC) from February 
to August (McCormick and Saunders, unpub- 
lished data). The interaction of seasonal and de- 
velopmental phenomena was controlled by exam- 
ining fish under both a simulated natural photope- 
riod and continuous light. (Atlantic salmon raised 
under continuous light grow normally but do not 
undergo a parr-smolt transformation: Saunders et 
al. 1985; McCormick et al. 1987.) A slight (<5%) 
decrease in plasma Na +, CI-, and osmolarity 
occurred in each group between March and April. 
No change in plasma Na +, CI-, Mg ++, K +, or 
osmolarity occurred during the period when salin- 
ity tolerance and gill Na+,K+-ATPase activity 
increased (May and June) and subsequently de- 
creased (August) in Atlantic salmon reared under 
natural photoperiod; nor were the levels of plasma 
ions and osmolarity different from those in fish 
reared under continuous light, in which increases 
in gill Na +,K+-ATPase activity and salinity toler- 
ance did not occur. These results indicate that 

changes in plasma ions are not a necessary con- 
sequence of differentiation in osmoregulatory or- 
gans during the parr-smolt transformation. 

The above conclusion does not imply, however, 
that changes in plasma or muscle ions do not 
occur in response to environmental change during 
the parr-smolt transformation. Several authors 
have suggested a direct connection between 
downstream migration and osmoregulatory dys- 
function in fresh water caused by preparatory 
differentiation (Fontaine 1975; D. R. N. Prim- 
mett, M. S. Miles, C. Talbot, and J. E. Thorpe, 
personal communication). We suggest that prepa- 
ratory physiological changes followed by environ- 
mental change (such as increased temperature or 
water flow) may be required for osmoregulatory 
perturbation, which may, in turn, be connected to 
migratory behavior. Strong correlations exist be- 

tween downstream migration and water tempera- 
ture for Atlantic salmon (Fried et al. 1978; Jons- 
son and Rudd-Hansen 1985). Kubo (1955) found 
that depression of plasma osmolarity during the 
parr-smolt transformation of masu salmon closely 
paralleled increases in water temperature. 

Since a variety of other physiological and be- 
havioral changes such as buoyancy, swimming 
ability, and orientation also occur during the 
parr-smolt transformation (Table 1), it seems 
likely that a variety of factors will be important in 
initiating migration. While we have supplied some 
suppositions, it is clear that the primary cue(s) of 
downstream migration and their relationship to 
osmoregulatory differentiation have yet to be es- 
tablished. In salmonid populations which undergo 
prolonged downstream migration there is evi- 
dence that migratory behavior and osmoregula- 
tory differentiation do not occur together (Ewing 
et al. 1980; Bradley and Rourke 1984). This phe- 
nomenon may be due to the length and variability 
of migration, which might preclude accurate an- 
ticipation of seawater entry. 

Metabolism 

There is substantial evidence of a metabolic 

reorganization during the parr-smolt transforma- 
tion. This evidence is derived primarily from 

TABLE I.---Some behavioral and physiological 
changes coincident with the parr-smolt transformation 
in salmonids. 

Behavioral or physiological change Reference 

Increased deposition of guanine and Johnston and Eales 
hypoxanthine in skin and scales (1967) 
(silvering) 

Increased buoyancy due to 
increased air volume of 
swimbladder 

Saunders (1965); Pinder 
and Eales (1969) 

Alterations in blbod hemoglobins 
(rapid increase in adult forms) 

Vanstone et al. (1964); 
Giles and Vanstone 
(1976b); Koch (1982); 
Sullivan et al. (1985) 

Increased schooling behavior Kalleberg (1958) 

Increased salinity preference Baggerman (1960); 
Mclnerney (1964) 

Negative rheotaxis Wagner (1974b); 
Eriksson and 

Lundqvist (1982); 
Lundqvist and 
Eriksson (1985) 

Decreased swimming ability Glova and Mclnerney 
(1977); Smith (1982) 
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observations on changes in body composition, 
oxygen consumption, and mitochondrial enzyme 
activity. We wish to address two general hypoth- 
eses during the review of this evidence. First, 
does a metabolic increase occur during the parr- 
smolt transformation.'? Second, is such a meta- 
bolic increase due to energetic requirements of 
differentiation or to increased anabolism associ- 

ated with growth or to both (Figure 2). 9 

Changes in Body Composition 

Several changes in carbohydrate metabolism 
are concurrent with the parr-smolt transforma- 
tion. Reduction of liver and muscle glycogen 
occurs in spring in Atlantic and coho salmon in 
both the presence and absence of migratory activ- 
ity (Fontaine and Hatey 1953; Malikova 1957; 
Wendt and Saunders 1973; Woo et al. 1978). 
Blood glucose has been reported to increase in 
Atlantic salmon (Wendt and Saunders 1973) and 
to decrease in coho salmon (Woo et al. 1978) at 

Differentiation 

Growth 

Differentiation & Growth IG 
i I I i i i 

March April May June July 

Parr • Smolt 

FIGURE 2.--Possible causes of metabolic increase 

during the parr-smolt transformation. Increases in met- 
abolic rate due to differentiation and growth can be 
associated with catabolism and anabolism, respectively. 
Increased growth rate (which occurs in both parr and 
smolts in spring) will, a priori, result in increased 
metabolic rate. There also is evidence for increased 

metabolic rate due to differentiation. Arrows suggest the 
magnitudes of the influence on metabolic rate exerted by 
differentiation (D) and growth (G) acting separately or 
together. 

the time of the parr-smolt transformation. Fon- 
taine et al. (1963) reported that the powerful 
hyperglycemic agents adrenaline and noradrena- 
line are at their highest levels in Atlantic salmon 
during the final stages of smolting in April-May. 

'With the exception of decreased blood glucose, 
the above changes are often associated with short- 
term stress (Schreck 1981). The increased suscep- 
tibility of smolts to stress has been noted by 
several authors (Wendt and Saunders 1973; 
Schreck 1982). Seasonal changes in enzyme activ- 
ity associated with glycogenolysis and glycoge- 
nesis, however, suggest a more permanent change 
that is unrelated to stress. Sheridan et al. (1985b) 
found that liver phosphorylase-a activity (glyco- 
genolysis) of coho salmon increases by 64% be- 
tween March and April, while uridine phosphate 
formation (glycogenesis) decreases by 54% from 
March to June. 

Total body protein decreased by 10% between 
February and April in large (>14 cm)juvenile 
rainbow trout, but not in smaller fish under the 
same conditions (Fessler and Wagner 1969). In 
contrast, Woo et al. (1978) found no change in 
liver and muscle protein content of coho salmon 
parr and smolts. Serum protein content of coho 
salmon smolts was 15% lower than in parr or 
postsmolts (Woo et al. 1978). Cowey and Parry 
(1963) found a 30% increase in muscle content of 
nonprotein nitrogenous constituents of smolts 
over that in parr, due almost entirely to increased 
creatine content. The authors suggested that in- 
creased creatine may be due to greater availability 
of N-phosphoryl creatine for endergonic reactions 
or to increased metabolism of several amino acids 

for which creatine is an end product. 
Cowey and Parry (1963) and Fontaine and Mar- 

chelidon (1971) could find no differences in total 
amino acid content of the brain or muscle between 

Atlantic salmon parr and smolts (they were able to 
sample both laboratory-reared and wild fish). The 
levels of particular amino acids did change, how- 
ever. Threonine and glutamine contents of the 
brains of smolts increased, while muscle glycine 
and taurine decreased (Fontaine and Marchelidon 
1971). Decreased muscle taurine content of Atlan- 
tic salmon smolts was also found by Cowey and 
Parry (1963). Fontaine and Marchelidon (1971) 
explained these changes as ramifications of sev- 
eral physiological changes during the parr-smolt 
transformation. G!ycine (a precursor of purines) 
may be involved in events leading to deposition of 
guanine and hypoxanthine in skin and scales, 
which results in silvering (Johnston and Eales 
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1967). Taurine is important for intracellular isos- 
motic regulation in teleosts (increasing when 
plasma osmolarity increases: King and Goldstein 
1983) and may be lowered in response to osmo- 
regulatory changes in fresh water or be distributed 
to other more sensitive tissues in preparation for 
hyperosmotic regulation. Increases in threonine 
in the brain, which is under insulin control in 
mammals (Okumura et al. 1959), may be a by- 
product of increased insulin concentration result- 
ing from glycemic fluctuations. While these in- 
triguing suppositions have yet to be given exper- 
imental support, they underline the importance of 
distinguishing cause and effect in this complex 
developmental process. 

Total body and muscle lipid decreases mark- 
edly in spring in juvenile Atlantic, coho, and masu 
salmon and in rainbow trout coincident with other 

parr-smolt changes (Vanstone and Markert 1968; 
Fessler and Wagner 1969; Saunders and Hender- 
son 1970, 1978; Ota and Yamada 1974a, 1974b; 
Komourdjian et al. 1976; Farmer et al. 1978; Woo 
et al. 1978; Sheridan et al. 1983). These changes 
do not occur in small juveniles (parr), are not 
dependent on changes in activity or temperature, 
and return to prespring levels by late summer 
when fishes are retained in fresh water (Malikova 
1957; Fessler and Wagner 1969; Ota and Yamada 
1974a, 1974b; Farmer et al. 1978; Saunders and 
Henderson 1978; Woo et al. 1978). Moisture con- 
tent of muscle varies inversely with lipid content 
(Farmer et al. 1978; Saunders and Henderson 
1978; Woo et al. 1978) though this appears to be a 
common feature of teleosts and not peculiar to the 
parr-smolt transformation (Phillips 1969). 

Sheridan and co-workers (Sheridan et al. 1983, 
1985a, 1985b; Sheridan and Allen 1983) have 
examined lipid dynamics of coho salmon and 
rainbow trout in some detail. Lipid content of 
serum, liver, and muscle (white and red) is de- 
pleted by up to 60% in spring. Mesenteric fat does 
not fluctuate. Large amounts of triacylglycerol 
(normally used as energy storage) in muscle and 
liver are reduced more than other lipid classes. A 
reorganization of the fatty acid composition also 
occurs. Increased amounts of long-chain polyun- 
saturated fatty acids and decreased linoleic acid, 
characteristic of marine teleosts, occur in fresh 
water during the parr-smolt transformation. Sim- 
ilar changes in lipid composition coincident with 
the migratory period were observed in juvenile 
Atlantic and masu salmon (Lovern 1934; Ota and 
Yamada 1974a, 1974b). The adaptive value of 
these changes is as yet unknown, though sugges- 

tions for a role in osmoregulation have been made 
(Sheridan et al. 1985a). 

The biochemical bases of changes in lipid me- 
tabolism have also been investigated (Sheridan et 
al. 1985b). Lipolytic rate (measured by the release 
of •4C-oleic acid from 14C-triolein) increases one- 
to three-fold in liver, red muscle, and mesenteric 
fat in coho salmon over a 4-month period in 
spring. During this same period 3H20 incorpora- 
tion into fatty acids of liver and mesenteric fat was 
halved, though no difference in lipogenesis of 
neutral lipids was detected. These results suggest 
both a reorganization of lipid composition for a 
marine existence and increased catabolism asso- 

ciated with the parr-smolt transformation. 

Oxygen Consumption 

Direct measurement of oxygen consumption is 
difficult to assess because of the relatively high 
individual variation, dependence on temperature 
and size (often requiring use of regressions, which 
can obscure data), effects of various activity lev- 
els, and differential response to handling stress or 
confinement. Baraduc and Fontaine (1955) found 
resting, weight-specific oxygen consumption of 
wild Atlantic salmon parr at 8øC was 25% lower 
than for wild smolts. Power (1959), working with 
Atlantic salmon from an Arctic environment, 
found a temperature divergence in oxygen con- 
sumption: smolts had lower oxygen consumption 
than parr below 13.5øC, but higher oxygen con- 
sumption above this temperature. This may be the 
result of increased activity in response to temper- 
ature. Higgins (1985) reported oxygen consump- 
tion as a function of differential growth and the 
parr-smolt transformation in Atlantic salmon. 
When oxygen consumption per animal was re- 
gressed to a common size, rapidly growing fish 
had higher oxygen consumption at 7.5øC than 
slower growing fish. Smolts (based on external 
appearance), however, had lower weight-specific 
oxygen consumption than nonsmolts. In one of the 
few reported studies in which activity levels were 
taken into account, Withey and Saunders (1973) 
found that postsmolt Atlantic salmon had higher 
rates of oxygen consumption than nonsmolts. 
Without more critical studies taking activity level 
into consideration, it is difficult to arrive at a firm 
conclusion concerning changes in oxygen con- 
sumption during the parr-smolt transformation. 

Respiratory Enzymes 

Mitochondrial enzyme activities are indicative 
of tissue respiratory rate or respiratory potential, 
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though some enzymes are more representative 
than others (Ericinska and Wilson 1982). Succi- 
nate dehydrogenase (Chernitsky and Shterman 
1981; Langdon and Thorpe 1985), citrate synthase 
and cytochrome-c oxidase activities (S. D. Mc- 
Cormick and R. L. Saunders, unpublished data) 
increase in gill homogenates of Atlantic salmon 
concurrent with the parr-smolt transformation. 
At first glance, these results would appear to 
coincide with the observed increase in numbers of 
mitochondria-rich chloride cells discussed earlier. 

Although chloride cells have greater respiratory 
enzyme activity than other gill cells (Sargent et al. 
1975), whole-gill homogenates of fish which are 
acclimated to seawater do not have different res- 

piratory enzyme activities (Epstein et al. 1967; 
Conte 1969; McCormick et al., unpublished data; 
for exceptions, see Sargent et al. 1975; Langdon 
and Thorpe 1984). Increases in gill respiratory 
enzyme activity observed during the parr-smolt 
transformation appear to go beyond what may be 
required for steady-state osmoregulation once 
seawater acclimation has occurred. The increase 

may be required for preparatory differentiation of 
the gills, or perhaps may aid in seawater adapta- 
tion during initial acclimation. 

Blake et al. (1984) found up to 50% increases in 
mitochondrial concentration, and in the activities 
of succinate dehydrogenase and cytochrome-c 
oxidase, in the livers of large (>16 cm), silvery 
Atlantic salmon relative to those of parr. Simi- 
larly, McCormick and Saunders (unpublished 
data) found that liver citrate synthase activity of 
smolt-size Atlantic salmon increased 25% be- 

tween March and June (coincident with increases 
in gill Na +,K+-ATPase activity) and subsequently 
declined to basal levels in August. These results, 
in combination with increased lipolytic and glycoo 
genolytic enzyme activities in coho salmon livers, 
suggest that increased catabolism occurs in the 
liver during the parr-smolt transformation. 

The evidence summarized here indicates that 

there is both reorganization and enhancement of 
metabolic activity during the parr-smolt transfor- 
mation. Unfortunately, there is relatively little 
information on the reversibility of these changes. 
Metabolic alterations which are adaptations for 
seawater entry, such as changes in lipid composi- 
tion, are analogous to preparatory osmoregula- 
tory changes and are probably lost if the animals 
are maintained in fresh water. Metabolic in- 

creases appear to be at least partly catabolic, 
owing possibly to the energetic demands of differ- 
entiation. Recovery of pretransformation body 

composition (Malikova 1957; Woo et al. 1978) and 
return of liver respiratory enzyme activity to 
presmolt level in summer indicate that increased 
catabolism subsides after the transformation, irre- 
spective of the environmental salinity. 

Growth 

The apparent size threshold of the parr-smolt 
transformation may rule out growth rate as the 
primary stimulus for differentiation. Yet patterns 
of growth will undoubtedly affect the year of 
occurrence of the parr-smolt transformation and 
perhaps also its timing and intensity (Clarke 
1982). The bimodal growth pattern of Atlantic 
salmon is a good example of the complex relation- 
ship between growth and transformation. Bimodal 
length-frequency distributions of laboratory- 
reared Atlantic salmon can be distinguished dur- 
ing the first autumn following hatching and have 
been attributed to an increase in growth rate of 
upper-mode fish (Kristinsson et al. 1985) and to a 
decline in growth rate owing to reduced appetite 
of lower-mode fish (Thorpe et al. 1982; Higgins 
1985; Thorpe 1987a). Though these distinctions 
are controversial, it is clear that upper- and lower- 
mode fish do not further subdivide even after the 

fish in each mode are placed in separate tanks 
(Thorpe 1977). Upper-mode fish invariably be- 
come smolts in I year, while lower-mode males 
undergo a high rate of sexual maturation during 
their first autumn and normally require another 
year to achieve smolt size. Existence in the lower 
mode, however, does not preclude undergoing 
transformation; elevated early winter temperature 
resulting in higher growth and a greater size in 
early spring will result in normal smolt appear- 
ance and performance (Saunders et al. 1982; 
Kristinsson 1984). The relationship between high 
growth rates of upper-mode fish and the parr- 
smolt transformation may be indirect, coupled 
only by the size dependence of the transformation 
(Thorpe et al. 1982). Alternatively, bimodality 
may be an early manifestation of parr-smolt trans- 
formation such that changes taking place in spring 
are the climax of processes which have been 
proceeding since the previous autumn (Thorpe 
1986). 

Under natural conditions, juvenile Atlantic 
salmon may begin seaward migration at 2-4 years 
of age, and at weights of 30-50 g. They frequently 
attain weights of 1.5-2.5 kg in their first year at 
sea. Increased growth is undoubtedly due in large 
part to increased quantity and quality of food and 
more favorable year-round temperatures (Gross 
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1987, this volume). It is presently unclear whether 
smolts undergo a physiological change resulting in 
increased scope for growth (maximum food intake 
minus that necessary for maintenance: Brett 1979) 
at temperature and ration levels characteristic of 
the marine environment. 

Increased growth of juvenile salmon occurs in 
spring concurrent with other transformation-re- 
lated changes and in direct response to increasing 
photoperiod (Saunders and Henderson 1970; 
Knutsson and Grav 1976; Komourdjian et al. 
1976; Clarke et al. 1978; Johnston and Saunders 
1981; Higgins 1985). Though evidence for a com- 
mon growth response of all salmonids to increas- 
ing photoperiod is lacking (Brett 1979), increased 
growth under increasing photoperiod also occurs 
in Atlantic salmon parr (Higgins 1985). One pecu- 
liar aspect of growth during the parr-smolt trans- 
formation is a decrease in condition factor (100 ß 
weight/length3; see Wedemeyer et al. 1980). This 
may be the result of a relative weight loss due to 
catabolism, or to an increased growth in length, 
such that increase in length outstrips growth in 
weight. Several authors have suggested an adap- 
tive change in morphology to explain the latter 
hypothesis (Thorpe 1982). 

In the absence of salinity effects, are parr and 
smolt distinguishable in their scope for growth 
either during or after the parr-smolt transforma- 
tion? Higgins (1985) found that, at maximum 
ration and identical thermal regimes, Atlantic 
salmon in the upper size mode (incipient smolts) 
had a higher instantaneous growth rate in spring 
than lower-mode fish (parr), despite the smaller 
size of lower-mode fish which would, other things 
being equal, result in higher instantaneous growth 
rates (Brett 1979). It is unclear, however, whether 
this result is a function of the bimodal-growth 
pattern, the parr-smolt transformation, or both. 
We have recently compared the summer growth 
in fresh water of Atlantic salmon smolts (50 g) 
with juveniles (50 g) exposed to continuous light 
that inhibited at least the osmoregulatory aspects 
of the transformation (McCormick et al. 1987). 
Instantaneous growth rate of smolts and of fish in 
continuous light over a 6-week period at constant 
temperature (13øC) was the same (1.8%/d). We 
have concluded that either continuous-light treat- 
ment does not inhibit all aspects of the parr-smolt 
transformation, or that an increase in scope for 
growth (at maximum ration and at 13øC) does not 
accompany transformation in Atlantic salmon. 

This limited evidence does not favor either 

acceptance or rejection of an increased scope for 

growth accompanying the parr-smolt transforma- 
tion. If it does indeed occur, it is likely to be large 
and more easily detected in species such as At- 
lantic salmon which spend longer periods (2-5 
years) in fresh water. Environmental effects on 
growth and scope for growth may also change 
after transformation. There is indirect evidence 

that the optimum temperature for marine growth 
of Atlantic salmon is lower than that for presmolt 
growth in fresh water (Reddin and Shearer 1987, 
this volume; Saunders 1987). Many fishes show 
reduced thermal optima for growth after the early 
juvenile stage (Hokanson 1977; Brett 1979; Mc- 
Cauley and Huggins 1979; Jobling 1981). Photo- 
periodic response may also change. Whereas 
growth of Atlantic salmon parr drops sharply in 
early autumn (decreasing photoperiod), despite 
favorable temperature and ration levels (R. L. 
Saunders, unpublished data), postsmolts in sea 
cages appear to continue growing rapidly in au- 
tumn until temperatures fall below 4øC (Sutterlin 
et al. 1981). Such an alteration in growth response 
to photoperiod has been observed in the bimodal 
growth pattern of juvenile Atlantic salmon 
(Kristinsson 1984; Higgins 1985; Kristinsson et al. 
1985; Thorpe 1987a). Substantiation or rejection 
of these suppositions could greatly increase our 
understanding of ontogenetic and environmental 
influences on growth in teleosts. 

Comparative Aspects of the Parr Smolt 
Transformation 

The variety of differentiative processes which 
occur and their responsiveness to photoperiodic 
cues underline the developmental nature of the 
parr-smolt transformation. This development has 
often been viewed as a single, size-related event 
which occurs seasonally and is reversible in the 
absence of sea water (Figure 3A). Although this 
may be true for some aspects of the transforma- 
tion, other aspects, such as silvering, salinity 
tolerance, and gill Na +,K+-ATPase activity, often 
display slight but significant seasonal rhythms in 
the absence of "real" or "total" changes associ- 
ated with transformation (Hoar 1965, 1976; Saun- 
ders and Henderson 1978; Langdon and Thorpe 
1985; McCormick et al. 1987). Perhaps we can 
more correctly view these developmental pro- 
cesses as an interaction or synergism (Figure 3D) 
between prior development (Figure 3B) and sea- 
sonal rhythms (Figure 3C) which manifests itself 
in a critical size and season for transformation. 

Each component of the parr-smolt transformation 
may possess a different gradient of these develop- 
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mental types. The existence of different develop- 
mental patterns emphasizes the adaptive value of 
temporal orchestration of the many changes that 
occur during the transformation. Otherwise, they 
may occur as isolated events or physiological 
developments which fall short of the attributes 
required for long-term marine residence. 

A 
Time 

FIGURE 3.--Developmental patterns that may occur for 
different aspects of the parr-smolt transformation. A: 
Seasonal occurrence of physiological change that is 
dependent on seasonal cues and prior development (a 
critical size). B: Differentiation that is independent of 
season. A change from B to B' may represent a change 
in ontogeny (i.e., increased growth rate resulting in 
increased differentiation at any time) or phylogeny (i.e., 
a different rate of differentiation relative to size resulting 
in increased salinity tolerance at any given size). C: 
Seasonal change that is independent of size, such as a 
photoperiod-cued increase in growth rate. D: Interac- 
tion of season and developmental rate. In this pattern, 
aspects of the parr-smolt transformation are an intensi- 
fication and synchronization of seasonal changes that 
are also dependent on prior development. D and D' 
represent, for instance, segments of a population that 
will undergo the parr-smolt transformation in the years 
n and n + 1, respectively. Analogous changes in devel- 
opmental timing may have occurred in the course of 
salmonid evolution (see Figure 4). S represents physio- 
logical differences between parr and smolt; SW is sea- 
water and FW is fresh water. 

Analysis of the parr-smolt transformation as a 
developmental process consisting of numerous 
components can facilitate comparisons among sal- 
monid species. Osmoregulatory physiology has 
received the most attention and can be more 

thoroughly explored. Brook trout, a member of 
the genus (Salvelinus) that has the least-devel- 
oped capacity for marine residence in the sub- 
family Salmoninae (Rounsefell ! 958; Hoar 1976), 
migrates into seawater at a relatively large size 
(>17 cm) and shows variability in the season of 
migration (White 1940; Wilder 1952; Castonguay 
et al. 1982; Montgomery et al. 1983). The devel- 
opment of salinity tolerance and hypoosmoregu- 
latory ability in brook trout occurs at a larger size 
than in species of Salmo or Oncorhynchus (e.g., 
Figure 3, B versus B'; see also McCormick and 
Naiman 1984b). The osmoregulatory aspect of the 
parr-smolt transformation, as characterized by 
seasonal differentiation of osmoregulatory organs 
resulting in increased salinity tolerance, is unde- 
veloped in brook trout (McCormick and Naiman 
1984b; McCormick et al. 1985a). It should be 
noted, however, that seasonal silvering occurs in 
anadromous brook trout populations (though this 
is not necessarily associated with seawater entry: 
Black 1981), indicating that different physiological 
changes associated with the parr-smolt transfor- 
mation can occur independently of one another. 

Pink salmon Oncorhynchus gorbuscha and 
chum salmon represent the opposite end of the 
salmonid spectrum, often spending as little as a 
month or two in fresh water after hatching before 
migrating to sea. Salinity tolerance in these two 
species is incomplete in the posthatch alevin stage 
but increases rapidly, permitting survival in sea 
water at sizes less than 5 cm long (Weisbart 1968). 
It seems probable that such a rapid attainment of 
salinity tolerance will preclude a photoperiodi- 
cally cued differentiation typical of other Ono 
corhynchus and Salmo species which undergo 
transformation and migrate at larger sizes. With 
the exception of changes in gill Na +,K+-ATPase 
activity (Sullivan et al. 1983) and kidney morphol- 
ogy (Ford 1958), little is known of the differenti- 
ation of osmoregulatory organs in pink and chum 
salmon. As in seasonally transforming salmonids, 
prolonged rearing of pink and chum salmon in 
fresh water results in substantial loss of salinity 
tolerance (Kashiwagi and Sato 1969; Iwata et al. 
1982). 

A phylogenetic comparison of the minimum 
size at which seawater entry occurs in salmonid 
species is presented in Figure 4. The developmen- 



222 MCCORMICK AND SAUNDERS 

E 20-- 

•, •5- 
o 

.; 

;o lO- 

o 

E 

o 5 -- 

.•/•/ Salvelinus fontinalis • .•½' 

o• / Salmo gairdneri • 
Salmo salar • 

Oncorhynchus kisutch • / '• Oncorhynchus tshawytscha • 

Onc orhynchus gorbuscha • 
Oncorhynchus keta • 

Seasonal 

Differentiation 

7 

=•8 

.•4, 10 
lO 

FIGURE 4.--Phylogenetic comparison of the minimum size at which the development of salinity tolerance occurs 
in the subfamily Salmoninae. Salinity tolerance is defined as greater than 75% survival in seawater (29%o for at least 
14 d. Seasonal differentiation (+) is defined as a photoperiod-controlled differentiation of osmoregulatory organs 
resulting in increased salinity tolerance. With the exception of brook trout, reversible ontogenetic differentiations 
have been shown to occur in the depicted species. Phylogenetic relationships suggest that heterochrony has 
occurred either through paedomorphosis (increasing size at differentiation) or recapitulation (decreasing size at 
differentiation). This hypothesis should not imply existence of a linear salmonid lineage but rather that, in the course 
of salmonid evolution, heterochrony has occurred in differentiation of osmoregulatory organs. References 
(superscripts): 1, Kashiwagi and Sato (1969); 2, Weisbart (1%8); 3, Wagner et al. (1969); 4, Conte et al. (1966); 5, 
Johnston and Saunders (1981); 6, Conte and Wagner (1965); 7, McCormick and Niaman (1984a, 1984b); 8, Wagner 
(1974b); 9, Saunders and Henderson (1970); 10, Clarke et al. (1978). 

tal nature of the attainment of salinity tolerance 
and the correspondence of this phylogeny to 
morphometrica!!y and genetically based phyloge- 
hies of the subfamily Salmoninae (especially in 
that Salrno is intermediate between Salvelinus 

and Oncorhynchus; see Neave 1958 for review) 
leads us to conclude that heterochrony3 in differ- 
entiation of hypoosmoregulatory capacity (and its 
underlying physiological mechanisms) has oc- 
curred during the evolution of these species 
(Figure 4; see Balon 1979, 1980 and Thorpe 1982 
for earlier discussions of heterochrony in salmo- 
nids). The direction of heterochrony, either pae- 
domorphic (increased size at attainment of salin- 
ity tolerance with advancing phylogeny) or reca- 
pitulatory (decreased size at attainment of salinity 
tolerance) has yet to be established. It seems 
likely that paedomorphosis would be associated 
with an ancestral seawater origin for salmonids, 

3Heterochrony is defined as changes in the timing of 
development, following the terminology of Gould 
(1978). 

and recapitulation with a fleshwater origin. Argu- 
ments based on fossil and extant species have 
been given for freshwater (Tchernavin 1939; Hoar 
1976) and seawater (Day 1887; Regan 1911; Balon 
1968; Thorpe 1982) origins of salmonids. Devel- 
opmental conflict between transformation and 
maturation, argued by Thorpe (1987, this volume) 
underlines the importance of changes in the timing 
of development in establishing a life history pat- 
tern. Viewing the parr-smolt transformation as a 
developmental process subject to changes in tim- 
ing during the course of salmonid evolution 
should facilitate species comparison and help gen- 
erate hypotheses concerning the adaptive mecha- 
nisms for seawater entry and their hormonal con- 
trol. Indeed, it seems likely that changes in the 
timing of expression of endocrine mechanisms 
controlling the transformation are responsible for 
the observed heterochrony. 

In a "common strategies" symposium, a final 
statement on comparative physiological tactics 
may seem inappropriately brief, yet a longer one 
is precluded by the limited state of our knowledge 
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concerning the osmoregulatory physiology of di- 
adromous fishes which, with the exception of 
salmonids and anguillids, have been little studied. 
The seaward migration of salmon and eels, de- 
spite the many differences between these fishes, is 
accompanied by morphological change (such as 
silvering) and increases in salinity tolerance and 
gill Na+,K+-ATPase activity (Fontaine 1975; 
Thomson and Sargent 1977). The common 
"strategy" of these two groups is to make a 
single, seasonal seaward migration during their 
lifetime, and they display a "tactic" of undergo- 
ing preparatory physiological adaptations. This is 
in contrast to euryhaline species (such as Fun- 
dulus spp.) which make repeated, less predictable 
movements into seawater. These fishes must have 

the capacity to alter osmoregulatory physiology 
more frequently, and it is generally believed that 
these changes are induced by environmental sa- 
linity (Karnaky 1986). One might predict, there- 
fore, that preparatory physiological adaptations 
.for seawater entry entailing ontogenetic differen- 
tiation would occur in species which make a single 
seaward migration. Conversely, diadromous or 
nondiadromous fishes which make repeated sea- 
water entries seem less likely to display such a 
tactic and may rely more heavily on induction by 
external salinity of a perpetual hypoosmoregula- 
tory capacity. 
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